Math 10860, Honors Calculus 2

Midterm 2 information

Spring 2020

The second midterm will be

Friday April 17.

It will be a 60 minute exam, but I will give you 90 minutes to do it. Here's how it will work:

- At some point between 11.30am and 12.30pm SBT, check in with me at https: //notredame.zoom.us/j/844811786.
- Once you have checked in, I will share the exam with you at your ND email address (as a pdf file in a Google drive).
- From the time I share the exam with you, you have 90 minutes to do the it (on your own paper). When you are done, scan the exam to a single pdf file, and email it back to me.
- Unless you let me know that you are having technical problems, there will be a penalty for returning the exam late.
- I'll be on Zoom from 11.30am through 1.00pm SBT, to answer questions and give clarifications. Also, from 1.00 pm to 2.00 pm , I'll easily be contactable by email.
- Remember: start the exam sometime between 11.30am and 12.30 pm SBT, by checking in with me; finish within 90 minutes.

The exam will cover everything from class on Wednesday, February 26 through Wednesday April 8: methods of integration (parts, substitution, trigonometric substitution, trigonometric integrals, partial fractions); Taylor things (agreement, Taylor polynomials, remainder terms, Taylor's theorem); sequences (basic properties, relation to continuity, bounded monotone sequences). In the course notes, that is Chapters 13,14 and 15 (for Chapter 15, only through to the top of page 373 - so not subsequences and Bolzano-Weierstrass); in terms of homeworks and quizzes, it is everything that was covered on homeworks 7 through 9 and quizzes 7 through 9.

Because it is essentially a take-home exam, the focus will be more on problems than definitions/statements of theorems.

Practice problems

1. Let

$$
I_{n}=\int x^{n} \sin x d x
$$

(a) Find I_{0} and I_{1}.
(b) Find a reduction formula that expresses I_{n+2} in terms of I_{n} for $n \geq 0$.
(c) Find $\int x^{5} \sin x d x$.
2. Find the following integrals:
(a)

$$
\int \log ^{3} x d x
$$

(b)

$$
\int \frac{\sqrt{1-x}}{1-\sqrt{x}} d x
$$

(c)

$$
\int \frac{d x}{2+\tan x}
$$

(d)

$$
\int \frac{x^{6}+x^{5}-2 x^{4}-x^{3}+8 x^{2}-4 x+5}{(x-1)^{2}(x+1)^{3}} d x .
$$

(e)

$$
\int_{0}^{\pi}\left(f(x)+f^{\prime \prime}(x)\right) \sin x d x
$$

(Here f is defined and twice differentiable on $[0, \pi]$, with $f^{\prime \prime}$ continuous. Your answer will depend on f, of course.)
3. Recall that $\sinh x=\frac{e^{x}-e^{-x}}{2}$.
(a) Find the degree $2 n+1$ Taylor polynomial of sinh about 0 .
(b) Write down the Lagrange form of the remainder term $R_{2 n+1,0, \sinh }(x)$.
(c) Show that for all real x the remainder term $R_{2 n+1,0, \sinh }(x)$ tends to 0 as n tends to infinity.
(d) Write down a sum (using summation notation), with all the summands being rational numbers, whose value is within 10^{-10} of $\sinh 5$.
4. Suppose that a_{i} is the coefficient of $(x-a)^{i}$ in the Taylor polynomial of $f(x)$ at a (so $\left.a_{i}=\frac{f^{(i)}(a)}{i!}\right)$ and that b_{i} is the coefficient of $(x-a)^{i}$ in the Taylor polynomial of $g(x)$ at a. In terms of the a_{i} 's and the b_{i} 's, express the coefficient of $(x-a)^{n}$ in the Taylor polynomial of each of the following functions at a :
(a) $2 f-3 g$
(b) $f g$.
(c) $h(x)=\int_{a}^{x} f(t) d t$.
5. Compute the following sequence limits:
(a)

$$
\lim _{n \rightarrow \infty} \frac{a^{n}-b^{n}}{a^{n}+b^{n}} .
$$

(Here a, b are arbitrary real constants; you may have to treat cases.)
(b)

$$
\lim _{n \rightarrow \infty}(n-\sqrt{n-a} \sqrt{n-b}) .
$$

(Again, a, b are arbitrary real constants; you may have to treat cases.)
6. Define two sequences $\left(a_{n}\right)_{n=1}^{\infty}$ and $\left(b_{n}\right)_{n=1}^{\infty}$ recursively by $0<a_{1}<b_{1}$ (some arbitrary reals) and for $n \geq 1$

$$
a_{n+1}=\sqrt{a_{n} b_{n}}, \quad b_{n+1}=\frac{a_{n}+b_{n}}{2} .
$$

(a) Prove that $b_{n} \geq a_{n}$ for all $n \geq 1$.
(b) Prove that $\left(a_{n}\right)_{n=1}^{\infty}$ is non-decreasing.
(c) Prove that $\left(b_{n}\right)_{n=1}^{\infty}$ is non-increasing.
(d) Explain why $\left(a_{n}\right)_{n=1}^{\infty},\left(b_{n}\right)_{n=1}^{\infty}$ both converge to finite limits.
(e) Show that $\lim _{n \rightarrow \infty} a_{n}=\lim _{n \rightarrow \infty} b_{n}$.

