
Math 10860, Honors Calculus 2

Midterm 2 — solutions

Friday April 17

1. (a) (5 points) Suppose (an)∞n=1 converges to limit L, and (bn)∞n=1 converges to limit
−L. Carefully show that (an + bn)∞n=1 converges to limit 0.

Solution: Given ε > 0, there is N1 such that n > N1 implies |an − L| < ε/2,
and there is N2 such that n > N2 implies |bn − (−L)| = |bn + L| < ε/2. For
n > max{N1, N2}, have

|an + bn − 0| = |(an − L) + (bn + L)| ≤ |an − L|+ |bn + L| < ε

2
+
ε

2
= ε.

Since ε > 0 was arbitrary, it follows that (an + bn)∞n=1 converges to limit 0.

(b) (5 points) Suppose that (an)∞n=1 is a sequence that converges to a finite limit. Set

bn = a2n
2+a2n

. Prove that (bn)∞n=1 converges to a finite limit.

Solution: Let L be the limit of (an). The function f(x) = x2

2+x2 is continuous
at L (it doesn’t matter whether L is positive, negative, or 0), so the sequence

(f(an)) converges to the finite limit L2

2+L2 . But (f(an)) = (bn), so we are done.

Alternative solution: use the various basic properties of limits that we stated in
lectures (and left as exercises): an → L so

• a2n → L2

• 2 + a2n → 2 + L2 6= 0

• L2

2+L2 → L2

2+L2 .

2. (a) (5 points) Compute
∫ √

x log x dx.

Solution: Use integration by parts, with u = log x (so du = dx/x) and dv =√
xdx (so v = (2/3)x3/2) to get∫ √

x log x dx =
2(log x)x3/2

3
− 2

3

∫ √
x dx =

2(log x)x3/2

3
− 4x3/2

9
.

(b) (5 points) For most of the credit, use a substitution (or substitutions) to reduce
to an integral of a rational function; for full credit complete the integration.∫

dx√
x+ 3
√
x
.



Solution: Let u = x1/6, so x = u6, dx = 6u5du, and
√
x+ 3
√
x = u3 +u2, leading

to ∫
dx√

x+ 3
√
x

= 6

∫
u5 du

u3 + u2

= 6

∫
u3 du

u+ 1

= 6

∫ (
u2 − u+ 1− 1

u+ 1

)
= 6

(
u3

3
− u2

2
+ u− log |u+ 1|

)
= 6

(√
x

3
− x1/3

2
+ x1/6 − log(1 + x1/6)

)
.

(No need for absolute value inside the log in the last line — in the domain of the
integrand (x > 0), 1 + x1/6 is positive.)

3. Set a1 = 1 and for n ≥ 1, set
an+1 =

√
6 + an.

(a) (4 points) Prove that an ≤ 3 always.

Solution: (Had we not been given the hint that we should show an upper bound
of 3, we could have guessed that this was the right choice for an upper bound.
We could have guessed that if L is the limit, then L =

√
6 + L, or L2−L− 6 = 0,

or (L+ 2)(L− 3) = 0, or L = either −2 or 3; but since L should be positive, we
could have guessed that L = 3, and then attempted to show that 3 is an upper
bound).

We’ll prove that an ≤ 3 for all n, by induction on n, with the base case n = 1
already given. For n ≥ 1, we have

an+1 ≤ 3 ⇐⇒
√

6 + an ≤ 3

⇐⇒ 6 + an ≤ 9

⇐⇒ an ≤ 3,

which is the induction hypothesis, so we are done by induction.

(b) (4 points) Prove that (an)∞n=1 is non-decreasing.

Solution: For n ≥ 1,

an+1 ≥ an ⇐⇒
√

6 + an ≥ an
⇐⇒ 6 + an ≥ a2n
⇐⇒ 0 ≥ a2n − an − 6

⇐⇒ 0 ≥ (an + 2)(an − 3).



This is true; since an ∈ [0, 3] (by part (a)) we have an + 2 ≥ 0 and an − 3 ≤ 0 so
(an + 2)(an − 3) ≤ 0. This shows that (an)∞n=1 is non-decreasing.

(c) (4 points) Explain why (an)∞n=1 converges to a limit ` (just state the result we have
proven that allows this to be concluded), and calculate ` (with brief justification).

Solution: (an) is non-decreasing and bounded above, so by a theorem from
lectures it converges to a limit (which happens to be the supremum of the an).

Suppose the limit is `. Since f(x) =
√

6 + x is continuous at ` (certainly ` ≥ 0),
it follows from the fundamental continuity theorem that (f(an)) converges to
f(`) =

√
6 + `. But (f(an)) = (an+1), which converges to `, so by uniqueness of

limits, we get ` =
√

6 + `. The only positive solution to this is ` = 3, so that is
the limit.

4. The Taylor polynomial of degree 2n of cos at 0 is

P2n,0,cos(x) = 1− x2

2!
+
x4

4!
− x6

6!
+ · · ·+ (−1)n

x2n

(2n)!
.

Let f(x) = cos(x2). It seems quite plausible that P4n,0,f (x), the Taylor polynomial of
degree 4n of f at 0, is P2n,0,cos(x

2), or

1− x4

2!
+
x8

4!
− x12

6!
+ · · ·+ (−1)n

x4n

(2n)!
.

(a) (4 points) Use what you know about Taylor polynomials to show that the above
polynomial is indeed P4n,0,f (x). Hint, so you don’t set off on the wrong
path: this question is about a Taylor polynomial of a fixed degree; it is not about
what happens as n goes to infinity.

Solution: We know (from a theorem in lectures) that P2n,0,cos(x) agrees to order
2n with cos at 0, meaning that

lim
x→0

P2n,0,cos(x)− cosx

x2n
= 0.

But as x → 0, so also does x2 → 0, so if we replace x with x2 in the above
expression, that limit is still 0 as x→ 0. In other words,

lim
x→0

P2n,0,cos(x
2)− cos(x2)

x4n
= 0.

This says that P2n,0,cos(x
2) agrees to order 4n with cos(x2) at 0, and so (again

by a result from lectures),

P2n,0,cos(x
2) = 1− x4

2!
+
x8

4!
− x12

6!
+ · · ·+ (−1)n

x4n

(2n)!

is the Taylor polynomial of degree 4n of cos(x2) at 0.



(b) (2 points) Using the result of part (a) (or otherwise, but I wouldn’t advise that!)
find the 100th derivative of f(x) = cos(x2) at 0, and the 102nd.

Solution: The coefficient of xm in the Taylor polynomial of f(x) = cos(x2) at 0
is

f (m)(0)

m!
.

From part (a), the coefficient of x100 is −150! , so

f (100)(0)

100!
=
−1

50!
,

and so

f (100)(0) =
−100!

50!
.

Also from part (a), the coefficient of x102 is 0, so

f (102)(0) = 0.

An extra credit problem (2 points): For each real x find

lim
n→∞

(
lim
k→∞

(cos(n!πx))2k
)
.

(You are very familiar with the function that sends x to the above limit).

Solution: Suppose x is rational. Then for all large enough n, n!πx is an integer
multiple of π, and so cos(n!πx) = ±1, so (cos(n!πx))2k = 1. So for all large enough n,
limk→∞ (cos(n!πx))2k = 1, and so

lim
n→∞

(
lim
k→∞

(cos(n!πx))2k
)

= 1.

Now suppose x is irrational. Then, for each fixed n, n!πx is not an integer multiple of π
(that would make π rational). So | cos(n!πx)| < 1 and 0 ≤ cos2(n!πx) < 1. So, for fixed
irrational x and natural number n, limk→∞ (cos(n!πx))2k = 0. It follows that in this case

lim
n→∞

(
lim
k→∞

(cos(n!πx))2k
)

= 0.

So: the function that sends x to the above limit is the Dirichlet function!


