Math 10860, Honors Calculus 2

Midterm 2
NAME:

Friday April 17

Instructions

- Attempt all questions for full credit.
- Please give complete and clear answers, et cetera, et cetera. (You know the drill by now. But I should add - this will be my first time e-grading. Please help me out by writing neatly!).
- Do the exam on your own paper. Put your name on top of the first page. Start each new question on a new page. Write the question number clearly.
- When you are done, scan all the pages, in order (question 1 first, then question 2, and so on), to a single pdf file, and email it back to me at math10860homework at gmail.com. You should return the exam to me within 90 minutes of receiving it, or risk losing points.
- It is ok to consult your notes, the textbook, and the course notes; but please avoid seeking out resources beyond these. And don't talk with anyone about the problems, while you are doing them! (Exception: it is ok to talk to your cat and/or dog.)

Peanuts by Charles Schultz

1 Problems (38 points total)

1. (a) (5 points) Suppose $\left(a_{n}\right)_{n=1}^{\infty}$ converges to limit L, and $\left(b_{n}\right)_{n=1}^{\infty}$ converges to limit $-L$. Carefully show that $\left(a_{n}+b_{n}\right)_{n=1}^{\infty}$ converges to limit 0 .
(b) (5 points) Suppose that $\left(a_{n}\right)_{n=1}^{\infty}$ is a sequence that converges to a finite limit. Set $b_{n}=\frac{a_{n}^{2}}{2+a_{n}^{2}}$. Prove that $\left(b_{n}\right)_{n=1}^{\infty}$ converges to a finite limit.
2. (a) (5 points) Compute $\int \sqrt{x} \log x d x$.
(b) (5 points) For most of the credit, use a substitution (or substitutions) to reduce to an integral of a rational function; for full credit complete the integration.

$$
\int \frac{d x}{\sqrt{x}+\sqrt[3]{x}}
$$

3. Set $a_{1}=1$ and for $n \geq 1$, set

$$
a_{n+1}=\sqrt{6+a_{n}} .
$$

(a) (4 points) Prove that $a_{n} \leq 3$ always.
(b) (4 points) Prove that $\left(a_{n}\right)_{n=1}^{\infty}$ is non-decreasing.
(c) (4 points) Explain why $\left(a_{n}\right)_{n=1}^{\infty}$ converges to a limit ℓ (just state the result we have proven that allows this to be concluded), and calculate ℓ (with brief justification).
4. The Taylor polynomial of degree $2 n$ of cos at 0 is

$$
P_{2 n, 0, \mathrm{cos}}(x)=1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}-\frac{x^{6}}{6!}+\cdots+(-1)^{n} \frac{x^{2 n}}{(2 n)!} .
$$

Let $f(x)=\cos \left(x^{2}\right)$. It seems quite plausible that $P_{4 n, 0, f}(x)$, the Taylor polynomial of degree $4 n$ of f at 0 , is $P_{2 n, 0, \cos }\left(x^{2}\right)$, or

$$
1-\frac{x^{4}}{2!}+\frac{x^{8}}{4!}-\frac{x^{12}}{6!}+\cdots+(-1)^{n} \frac{x^{4 n}}{(2 n)!} .
$$

(a) (4 points) Use what you know about Taylor polynomials to show that the above polynomial is indeed $P_{4 n, 0, f}(x)$. Hint, so you don't set off on the wrong path: this question is about a Taylor polynomial of a fixed degree; it is not about what happens as n goes to infinity.
(b) (2 points) Using the result of part (a) (or otherwise, but I wouldn't advise that!) find the 100th derivative of $f(x)=\cos \left(x^{2}\right)$ at 0 , and the 102 nd .

An extra credit problem (2 points): For each real x find

$$
\lim _{n \rightarrow \infty}\left(\lim _{k \rightarrow \infty}(\cos (n!\pi x))^{2 k}\right)
$$

(You are very familiar with the function that sends x to the above limit).

Foxtrot by Bill Amend

Found at https://lifethroughamathematicianseyes.wordpress.com/2015/10/21/ fun-with-integrals/

$x k c d$ by Randall Munroe

