Math 10860, Honors Calculus 2

Quiz 10, Thursday April 23
Solutions

1. Give a complete statement of the ratio test for series convergence.

Solution: If $\left(a_{n}\right)$ is a sequence of non-negative terms, and $\lim _{n \rightarrow \infty} \frac{a_{n+1}}{a_{n}}$ exists and equals r (acceptable: $\lim _{n \rightarrow \infty} \frac{a_{n+1}}{a_{n}}=r$), then

- if $r>1,\left(a_{n}\right)$ is not summable (or, equally acceptable, $\sum_{n=1}^{\infty} a_{n}$ does not converge, or is not finite, or does not exist, or equals infinity, or sums to infinity);
- if $r<1,\left(a_{n}\right)$ is summable (or, equally acceptable, $\sum_{n=1}^{\infty} a_{n}$ converges, or is finite, or exists); and
- if $r=1$, no conclusion about the summability of $\left(a_{n}\right)$ (or, equally acceptable, about the convergence or otherwise, or finiteness or otherwise, of $\sum_{n=1}^{\infty} a_{n}$) can be reached.

Equally acceptable is a statement about the absolute summability of $\left(a_{n}\right)$ in terms of $\lim _{n \rightarrow \infty} \frac{\left|a_{n+1}\right|}{\left|a_{n}\right|}$.
2. Determine for which real x does the series $\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{n}}{2 n+1}$ converge. Briefly justify your various assertions.
Hint: Consider cases, the first of which should be very quick.
Case $1 x>1$ and $x<-1$.
Case $20 \leq x \leq 1$ (note that the terms alternate in sign in this regime).
Case $3-1<x<0$ (note that all terms are positive in this and the next regime).
Case $4 x=-1$.

Solution:

Case $1 x>1$ and $x<-1$: the nth term does not go to zero, so the series does not converge for any of these values.
Case $20 \leq x \leq 1$: here the series is

$$
1-\frac{x}{3}+\frac{x^{2}}{5}-\frac{x^{3}}{7}+\cdots
$$

The sequence $\left(x^{n} /(2 n+1)\right)$ is decreasing: for $x>0$,

$$
\left(\frac{x^{n+1}}{2 n+3}<\frac{x^{n}}{2 n+1}\right) \Longleftrightarrow\left(x<\frac{2 n+3}{2 n+1}\right)
$$

which is certainly true for $x \leq 1$. Also, the sequence goes to 0 as $n \rightarrow \infty$, so by the Leibniz alternating series test the series converges.

Case $3-1<x<0$. Note that all terms are positive in this and the next regime, so the series is $\sum_{n=0}^{\infty} \frac{|x|^{n}}{2 n+1}$. We use the ratio test on this series:

$$
\frac{a_{n+1}}{a_{n}}=\frac{|x|^{n+1}(2 n+1)}{(2 n+3)|x|^{n}}=\frac{|x|(2 n+2)}{2 n+3} \rightarrow|x|<1 \quad \text { as } n \rightarrow \infty,
$$

so by the ratio test, the series converges.
Case $4 x=-1$: If $x=-1$ the series becomes

$$
1+\frac{1}{3}+\frac{1}{5}+\frac{1}{7}+\cdots
$$

which does not converge, for example by the limit comparison test, comparing with the Harmonic series (the nth term of the Harmonic series is $1 / n$, and the n term of the present series is $1 /(2 n-1)$, so the limit of the ratio $1 / 2)$.

In summary, $\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{n}}{2 n+1}$ converges for $x \in(-1,1]$ and nowhere else.
Note that one could also consider a case $-1<x<1$, and use the ratio test to show absolute convergence, and thus convergence, in this regime; but this wouldn't safe much time, as one would still have to do Leibniz' test at $x=1$.

