Math 10860, Honors Calculus 2

Quiz 2, Thursday January 30

Solutions

1. Let A be a non-empty set, bounded both above and below. Let $M = \sup A$ and $m = \inf A$. Let $-A = \{-x : x \in A\}$. What are $\sup(-A)$ and $\inf(-A)$? Justify one of your two claims carefully.

Solution: We claim that $\sup(-A) = -m$ and $\inf(-A) = -M$. To prove the first of these, namely $\sup(-A) = -m$, we have to two two things: first, show that -m is an upper bound for -A, and second, show that it a *least* upper bound.

- -m is an upper bound for -A: For each $x \in A$ we have $m \leq x$, so $-m \geq -x$. This says that $-m \geq y$ for all $y \in -A$ (the elements of -A are exactly numbers of the form -x for $x \in A$), so -m is an upper bound for -A.
- -m is a *least* upper bound for -A: Let t be any upper bound for -A. We have $t \ge y$ for all $y \in -A$, so $t \ge -x$ for all $x \in A$, so $-t \le x$ for all $x \in A$, so -t is a lower bound for A, so $-t \le m$ (since m is a greatest lower bound), so $t \ge -m$. Hence -m is indeed a *least* upper bound for -A.

The proof that inf(-A) = -M is almost identical.

- 2. Suppose $f : [a, b] \to \mathbb{R}$ is bounded. Let P be a partition of [a, b]. Prove one of the following two claims (they are both true, and have almost identical proofs. It might be helpful to use part 1):
 - (a) U(-f, P) = -L(f, P)
 - (b) L(-f, P) = -U(f, P).

Solution: We just prove part (a). We assume $P = (t_0, \ldots, t_n)$. In the second line below, we use the fact that

$$\{-f(x): x \in [t_{i-1}, t_i]\} = -\{f(x): x \in [t_{i-1}, t_i]\},\$$

so that, by part 1,

 $\sup\{-f(x): x \in [t_{i-1}, t_i]\} = -\{f(x): x \in [t_{i-1}, t_i]\} = \sup\left(-\{f(x): x \in [t_{i-1}, t_i]\}\right) = -\inf\{f(x): x \in [t_{i-1}, t_i]\}.$ We have

$$U(-f, P) = \sum_{i=1}^{n} \sup\{-f(x) : x \in [t_{i-1}, t_i]\}\Delta_i$$

=
$$\sum_{i=1}^{n} -\inf\{f(x) : x \in [t_{i-1}, t_i]\}\Delta_i$$

=
$$-\sum_{i=1}^{n} \inf\{f(x) : x \in [t_{i-1}, t_i]\}\Delta_i$$

=
$$-L(f, P).$$

The proof that L(-f, P) = -U(f, P) is almost identical.

3. Suppose f as in part 2 is integrable. Use the result of part 2 to show that -f is also integrable.

Solution: Let $\varepsilon > 0$ be given. Since f is integrable there is a partition P of [a, b] for which $U(f, P) - L(f, P) < \varepsilon$. For this partition P we have (by part 2)

$$U(-f,P) - L(-f,P) = -L(f,P) - (-U(f,P)) = U(f,P) - L(f,P) < \varepsilon.$$

Since $\varepsilon > 0$ was arbitrary, this shows that -f is integrable.

Note: The question did not ask this, but here is a very quick proof that $\int_a^b -f = -\int_a^b f$. By hypothesis f is integrable, and we have just shown that -f is integrable, so (by the addition result) we know f + (-f) is integrable, and $\int_a^b (f + (-f)) = \int_a^b f + \int_a^b -f$. But f + (-f) = 0, so $\int_a^b (f + (-f)) = 0$. It follows that

$$\int_{a}^{b} f + \int_{a}^{b} -f = 0$$

so $\int_a^b -f = -\int_a^b f$.