Math 10860, Honors Calculus 2

Quiz 2, Thursday January 30
Solutions

1. Let A be a non-empty set, bounded both above and below. Let $M=\sup A$ and $m=\inf A$. Let $-A=\{-x: x \in A\}$. What are $\sup (-A)$ and $\inf (-A)$? Justify one of your two claims carefully.

Solution: We claim that $\sup (-A)=-m$ and $\inf (-A)=-M$. To prove the first of these, namely $\sup (-A)=-m$, we have to two two things: first, show that $-m$ is an upper bound for $-A$, and second, show that it a least upper bound.

- $-m$ is an upper bound for $-A$: For each $x \in A$ we have $m \leq x$, so $-m \geq-x$. This says that $-m \geq y$ for all $y \in-A$ (the elements of $-A$ are exactly numbers of the form $-x$ for $x \in A$), so $-m$ is an upper bound for $-A$.
- $-m$ is a least upper bound for $-A$: Let t be any upper bound for $-A$. We have $t \geq y$ for all $y \in-A$, so $t \geq-x$ for all $x \in A$, so $-t \leq x$ for all $x \in A$, so $-t$ is a lower bound for A, so $-t \leq m$ (since m is a greatest lower bound), so $t \geq-m$. Hence $-m$ is indeed a least upper bound for $-A$.
The proof that $\inf (-A)=-M$ is almost identical.

2. Suppose $f:[a, b] \rightarrow \mathbb{R}$ is bounded. Let P be a partition of $[a, b]$. Prove one of the following two claims (they are both true, and have almost identical proofs. It might be helpful to use part 1):
(a) $U(-f, P)=-L(f, P)$
(b) $L(-f, P)=-U(f, P)$.

Solution: We just prove part (a). We assume $P=\left(t_{0}, \ldots, t_{n}\right)$. In the second line below, we use the fact that

$$
\left\{-f(x): x \in\left[t_{i-1}, t_{i}\right]\right\}=-\left\{f(x): x \in\left[t_{i-1}, t_{i}\right]\right\}
$$

so that, by part 1 ,

$$
\sup \left\{-f(x): x \in\left[t_{i-1}, t_{i}\right]\right\}=-\left\{f(x): x \in\left[t_{i-1}, t_{i}\right]\right\}=\sup \left(-\left\{f(x): x \in\left[t_{i-1}, t_{i}\right]\right\}\right)=-\inf \left\{f(x): x \in\left[t_{i-1}, t_{i}\right]\right\} .
$$

We have

$$
\begin{aligned}
U(-f, P) & =\sum_{i=1}^{n} \sup \left\{-f(x): x \in\left[t_{i-1}, t_{i}\right]\right\} \Delta_{i} \\
& =\sum_{i=1}^{n}-\inf \left\{f(x): x \in\left[t_{i-1}, t_{i}\right]\right\} \Delta_{i} \\
& =-\sum_{i=1}^{n} \inf \left\{f(x): x \in\left[t_{i-1}, t_{i}\right]\right\} \Delta_{i} \\
& =-L(f, P) .
\end{aligned}
$$

The proof that $L(-f, P)=-U(f, P)$ is almost identical.
3. Suppose f as in part 2 is integrable. Use the result of part 2 to show that $-f$ is also integrable.

Solution: Let $\varepsilon>0$ be given. Since f is integrable there is a partition P of $[a, b]$ for which $U(f, P)-L(f, P)<\varepsilon$. For this partition P we have (by part 2)

$$
U(-f, P)-L(-f, P)=-L(f, P)-(-U(f, P))=U(f, P)-L(f, P)<\varepsilon
$$

Since $\varepsilon>0$ was arbitrary, this shows that $-f$ is integrable.
Note: The question did not ask this, but here is a very quick proof that $\int_{a}^{b}-f=-\int_{a}^{b} f$. By hypothesis f is integrable, and we have just shown that $-f$ is integrable, so (by the addition result) we know $f+(-f)$ is integrable, and $\int_{a}^{b}(f+(-f))=$ $\int_{a}^{b} f+\int_{a}^{b}-f$. But $f+(-f)=0$, so $\int_{a}^{b}(f+(-f))=0$. It follows that

$$
\int_{a}^{b} f+\int_{a}^{b}-f=0
$$

so $\int_{a}^{b}-f=-\int_{a}^{b} f$.

