# Math 10860, Honors Calculus 2 

Quiz 3, Thursday February 6<br>Solutions

1. (a) Give a clear \& correct statement (including all hypotheses) of the fundamental theorem of calculus, part 1.

Solution: If $I$ is an interval, and $f: I \rightarrow \mathbb{R}$ is integrable on (every closed interval contained in) $I$, and the function $F: I \rightarrow \mathbb{R}$ is defined by $F(x)=\int_{a}^{x} f$ (or, $F(x)=\int_{a}^{x} f(t) d t$, and if $f$ is continuous at $c$, then $F$ is differentiable at $c$, and $F^{\prime}(c)=f(c)$.
A corollary of this is that if $f$ is continuous on $I$ then $F$ is differentiable on $I$, and $F^{\prime}=f$ on $I$, but this corollary doesn't imply FTOC1 - knowing something about what happens if $f$ is continuous everywhere doesn't allow us to deduce anything about what happens if $f$ is continuous at just one point. So this cannot be considered a correct answer to the question.
Also, FTOC 1 has nothing to do with the integrals of integrable functions being continuous - that was something we proved before introducing FTOC1, as a first indication that integration is a "smoothing" operation, and is not needed for FTOC1.
(b) Give a clear \& correct statement (including all hypotheses) of the fundamental theorem of calculus, part 2.

Solution: If $f:[a, b] \rightarrow \mathbb{R}$ is integrable, and if there is a function $g:[a, b] \rightarrow \mathbb{R}$ satisfying $g^{\prime}=f$ on $[a, b]$, then $\int_{a}^{b} f=g(b)-g(a)$.
The weaker statement that replaces " $f$ is integrable" with " $f$ is continuous" (in which case the existence of a $g$ does not need to by hypothesized) is not FTOC2; it is just a corollary of FTOC1.
2. Determine directly (without comparison to other, known, integrals) whether the improper integral $\int_{0}^{\infty} \frac{d x}{\sqrt{x+1}}$ exists. (You may use FTOC if you wish.)

Solution: The easiest approach uses FTOC2. On $[0, N]$ the function $f(x)=1 / \sqrt{x+1}$ is bounded and integrable, and has an antiderivative $g(x)=2 \sqrt{x+1}$, so $\int_{0}^{N} f=2 \sqrt{N+1}-2 \sqrt{1}$. Since $2 \sqrt{N+1}-2 \sqrt{1}$ can be made arbitrarily large by choosing $N$ large enough, we get that $\lim _{N \rightarrow \infty} \int_{0}^{N} d x / \sqrt{x+1}$ does not exist, so neither does $\int_{0}^{\infty} \frac{d x}{\sqrt{x+1}}$.

