Math 10860, Honors Calculus 2

Quiz 4, Thursday February 13

Name:

1. Suppose that f is a one-to-one function, that is differentiable everywhere on its domain, with derivative never zero. Suppose also that there is a function F with $F^{\prime}=f$.

Set $G(x)=x f^{-1}(x)-F\left(f^{-1}(x)\right)$. Verify that $G^{\prime}(x)=f^{-1}(x)$. (Remark: so, if we know an antiderivative of f, we also know an antiderivative of f^{-1}.)
2. Suppose that $f: \mathbb{R} \rightarrow \mathbb{R}$ is continuous, invertible and satisfies $f^{-1}=f$. Prove that f has a fixed point (a number x such that $f(x)=x$).

