Math 10860, Honors Calculus 2

Quiz 4, Thursday February 13

Solutions

1. Suppose that f is a one-to-one function, that is differentiable everywhere on its domain, with derivative never zero. Suppose also that there is a function F with $F^{\prime}=f$.
Set $G(x)=x f^{-1}(x)-F\left(f^{-1}(x)\right)$. Verify that $G^{\prime}(x)=f^{-1}(x)$. (Remark: so, if we know an antiderivative of f, we also know an antiderivative of f^{-1}.)

Solution:

$$
\begin{aligned}
G^{\prime}(x) & =x\left(f^{-1}\right)^{\prime}(x)+f^{-1}(x)-F^{\prime}\left(f^{-1}(x)\right)\left(f^{-1}\right)^{\prime}(x) \quad \text { (product rule, chain rule) } \\
& =\frac{x}{f^{\prime}\left(f^{-1}(x)\right)}+f^{-1}(x)-\frac{f\left(f^{-1}(x)\right)}{f^{\prime}\left(f^{-1}(x)\right)} \quad\left(F^{\prime}=f \text { and } f^{\prime}\right. \text { never zero) } \\
& =\frac{x}{f^{\prime}\left(f^{-1}(x)\right)}+f^{-1}(x)-\frac{x}{f^{\prime}\left(f^{-1}(x)\right)} \quad\left(f\left(f^{-1}(x)\right)=x\right) \\
& =f^{-1}(x)
\end{aligned}
$$

2. Suppose that $f: \mathbb{R} \rightarrow \mathbb{R}$ is continuous, invertible and satisfies $f^{-1}=f$. Prove that f has a fixed point (a number x such that $f(x)=x$).

Solution: Given $a \in \mathbb{R}$, we either have $f(a)=a$, in which case we are done, or we have $f(a) \neq a$. In the latter case, either $f(a)<a$ or $f(a)>a$. In either case, set $f(a)=b$.
We have $f^{-1}(b)=a$, but since $f^{-1}=f$ this says that $f(b)=a$.
Now consider the function g given by $g(x)=f(x)-x$. On the closed interval $[a, b], g$ takes on both negative and positive values (if $b<a$ then $g(a)=f(a)-a=b-a<0$ and $g(b)=f(b)-b=a-b>0$, and similarly if $b>a$ then $g(a)>0$ and $g(b)<0)$. Since g is continuous, the intermediate value theorem ensures that there is $x \in[a, b]$ with $g(x)=0$ so $f(x)=x$.

