Math 10860, Honors Calculus 2

Quiz 6, Thursday February 27
Just for practice

1. When we began discussing the trigonometric functions, we gave a precise definition of the function \cos on the domain $[0, \pi]$. State that definition. ${ }^{1}$
2. From the angle-summation formulae (together with the basic Phythagorean identity connecting sin and \cos), other useful formulae can be deduced.
(a) Verify that ${ }^{2}$

$$
\cos ^{2} \theta=\frac{1+\cos 2 \theta}{2}
$$

(b) Verify that ${ }^{3}$

$$
\tan (t / 2)=\frac{\sin t}{1+\cos t}
$$

[^0]
[^0]: ${ }^{1}$ You don't need to argue that it is a meaningful definition.
 ${ }^{2}$ There's also $\sin ^{2} \theta=\frac{1-\cos \theta}{2}$, which is worth remembering.
 ${ }^{3}$ This also equals $\frac{1+\cos t}{\sin t}$

