Math 10860, Honors Calculus 2

Quiz 6, Thursday February 27

Solutions

1. When we began discussing the trigonometric functions, we gave a precise definition of the function cos on the domain $[0, \pi]$. State that definition. ${ }^{1}$

Solution: For $x \in[0, \pi], \cos x$ is defined to be $A^{-1}(x / 2)$, where

$$
A(x)=\frac{x \sqrt{1-x^{2}}}{2}+\int_{x}^{1} \sqrt{1-t^{2}} d t .
$$

(Equivalently, with A as defined above, $\cos x$ is that unique number ? such that $A(?)=x / 2$.)
2. From the angle-summation formulae (together with the basic Phythagorean identity connecting sin and \cos), other useful formulae can be deduced.
(a) Verify that ${ }^{2}$

$$
\cos ^{2} \theta=\frac{1+\cos 2 \theta}{2}
$$

Solution: We recall the angle-summation formulae: $\cos (x+y)=\cos x \cos y-\sin x \sin y$ and $\sin (x+y)=\sin x \cos y+\cos x \sin y$. Applying the first with $x=y=\theta$ we get

$$
\cos 2 \theta=\cos ^{2} \theta-\sin ^{2} \theta
$$

Also

$$
1=\cos ^{2} \theta+\sin ^{2} \theta
$$

Adding these two and dividing by 2 gives the desired identity. (Subtracting and dividing by 2 gives the one mentioned in the footnote.)
(b) Verify that ${ }^{3}$

$$
\tan (t / 2)=\frac{\sin t}{1+\cos t}
$$

Solution: One solution goes like this: we have $\cos t=\cos ^{2}(t / 2)-\sin ^{2}(t / 2)$ and $\sin t=$ $2 \sin (t / 2) \cos (t / 2)$ (the second from the sin summation formula), so

$$
\begin{aligned}
\frac{\sin t}{1+\cos t} & =\frac{2 \sin (t / 2) \cos (t / 2)}{\left(\cos ^{2}(t / 2)+\sin ^{2}(t / 2)\right)+\left(\cos ^{2}(t / 2)-\sin ^{2}(t / 2)\right)} \\
& =\frac{2 \sin (t / 2) \cos (t / 2)}{2 \cos ^{2}(t / 2)} \\
& =\frac{\sin (t / 2)}{\cos (t / 2)} \\
& =\tan (t / 2),
\end{aligned}
$$

[^0]the division in the last step valid because $\cos (t / 2) \neq 0$ (since implicitly $\tan (t / 2)$ is defined). (The identity in the footnote can be proved similarly).
Another solution might proceed by using
$$
\cos (t / 2)=\sqrt{\frac{1+\cos t}{2}}, \quad \sin (t / 2)=\sqrt{\frac{1-\cos t}{2}}
$$
but this requires care, as in reality
$$
\cos (t / 2)= \pm \sqrt{\frac{1+\cos t}{2}}, \quad \sin (t / 2)= \pm \sqrt{\frac{1-\cos t}{2}}
$$
and we have to break into cases, since the sign in front of the square root depends on the particular t under consideration.

[^0]: ${ }^{1}$ You don't need to argue that it is a meaningful definition.
 ${ }^{2}$ There's also $\sin ^{2} \theta=\frac{1-\cos \theta}{2}$, which is worth remembering.
 ${ }^{3}$ This also equals $\frac{1+\cos t}{\sin t}$

