Math 10860, Honors Calculus 2

Quiz 7

Solutions

1. Use the substitution $u=\sqrt{1+\sqrt{x}}$ to find

$$
\int \frac{d x}{\sqrt{1+\sqrt{x}}}
$$

Solution: With $u=\sqrt{1+\sqrt{x}}$, have $\sqrt{x}=u^{2}-1$ and

$$
d u=\frac{d x}{4 \sqrt{x} \sqrt{1+\sqrt{x}}}=\frac{d x}{4\left(u^{2}-1\right) u}
$$

so

$$
d x=\left(4 u^{3}-4 u\right) d u
$$

and so

$$
\begin{aligned}
\int \frac{d x}{\sqrt{1+\sqrt{x}}} & =\int \frac{4 u^{3}-4 u}{u} d u \\
& =\int\left(4 u^{2}-4\right) d u \\
& =\frac{4}{3} u^{3}-4 u \\
& =\frac{4}{3}(1+\sqrt{x}) \sqrt{1+\sqrt{x}}-4 \sqrt{1+\sqrt{x}} \\
& =\frac{4}{3}(\sqrt{x}-2) \sqrt{1+\sqrt{x}}
\end{aligned}
$$

2. Using an appropriate substitution, reduce

$$
\int \frac{x^{2}}{\sqrt{x^{2}+1}} d x
$$

to an integral that only involves trigonometric functions.
Solution: The obvious substitution is $x=\tan t$. This gives $d x=\sec ^{2} t d t$, and

$$
\sqrt{x^{2}+1}=\sqrt{\tan ^{2} t+1}=\sqrt{\sec ^{2} t}=\sec t
$$

Note that the domain of $\sqrt{x^{2}+1}$ is all real x, so $t=\arctan (x)$ varies over $(-\pi / 2, \pi / 2)$ (the full range of arctan); on this interval sec is positive, so it is valid to write

$$
\sqrt{\sec ^{2} t}=\sec t
$$

(we do not need to write $\sqrt{\sec ^{2} t}=|\sec t|$). So

$$
\int \frac{x^{2}}{\sqrt{x^{2}+1}} d x=\int \frac{\tan ^{2} x \sec ^{2} x}{\sec x} d x=\int \tan ^{2} x \sec x d x=\int \frac{\sin ^{2} x}{\cos ^{3} x} d x
$$

(Any of these expressions, or indeed any other equivalent expression, is fine here.)

