Math 10860, Honors Calculus 2

Quiz 8
Thursday April 2

1. Taylor's theorem with Lagrange remainder term says that given a function f, a real a, a natural number n, and a real x, if certain hypotheses are satisfied then
$f(x)=f(a)+f^{\prime}(a)(x-a)+\frac{f^{\prime \prime}(a)}{2}(x-a)^{2}+\cdots+\frac{f^{(n)}(a)}{2}(x-a)^{n}+R_{n, a, f}(x)$,
with $R(n, a, f)(x)$ taking a certain form. State the necessary hypotheses, and the exact form that $R(n, a, f)(x)$ takes.
2. Show that $x+x^{2} / 2$ agrees to order 2 with $\log \left(x^{2}+x+1\right)$ at 0 .
3. What is the highest order to which $x^{7}+x^{6}$ and $x^{7}-x^{5}$ agree at 0 ?
