Math 10860, Honors Calculus 2

Quiz 8
Solutions

1. Taylor's theorem with Lagrange remainder term says that given a function f, a real a, a natural number n, and a real x, if certain hypotheses are satisfied then

$$
f(x)=f(a)+f^{\prime}(a)(x-a)+\frac{f^{\prime \prime}(a)}{2}(x-a)^{2}+\cdots+\frac{f^{(n)}(a)}{2}(x-a)^{n}+R_{n, a, f}(x)
$$

with $R(n, a, f)(x)$ taking a certain form. State the necessary hypotheses, and the exact form that $R(n, a, f)(x)$ takes.

Solution: The necessary hypotheses, as stated in the version of Taylor's theorem with Lagrange remainder form proved in the lectures and stated in the notes as the weak form of the theorem, are that

- all the derivatives of f up to and including the $(n+1)$ th derivative exist on an interval that includes a and x, and
- $f^{(n+1)}$ is continuous on the interval.

The exact form of the remainder term is

$$
R_{n, a, f}(x)=f^{(n+1)}(c) \frac{(x-a)^{n+1}}{(n+1)!}
$$

where c is some number that lies between a and x.
In the notes, there is also a strong form of the theorem mentioned (in a footnote), that drops that condition that $f^{(n+1)}$ is continuous, and just requires that it exists.
2. Show that $x+x^{2} / 2$ agrees to order 2 with $\log \left(x^{2}+x+1\right)$ at 0 .

Solution: A slick way to do this is to compute the Taylor polynomial of degree 2 of $f(x)=\log \left(x^{2}+x+1\right)$ at $a=0$, and check that it is $x+x^{2} / 2$. Then the fact (presented, with proof, in notes and lectures) that
the unique polynomial of degree 2 that agrees to order 2 with f is the Taylor polynomial $P_{2, a, f}(x)$
gives the result.
The more prosaic solution:

$$
\begin{aligned}
\lim _{x \rightarrow 0} \frac{x+x^{2} / 2-\log \left(x^{2}+x+1\right)}{x^{2}} & =\lim _{x \rightarrow 0} \frac{1+x-\frac{2 x+1}{x^{2}+x+1}}{2 x} \\
& =\lim _{x \rightarrow 0} \frac{x^{3}+2 x^{2}}{2 x^{2}+2 x+2} \\
& =0,
\end{aligned}
$$

where in the first line we use L'Hôpital's rule, whose validity is contingent on the right-hand limit existing, which it does, as verified by the subsequent lines. Since the limit is 0 , we see that $x+x^{2} / 2$ agrees with $\log \left(x^{2}+x_{1}\right)$ to order 2 at $a=0$.
3. What is the highest order to which $x^{7}+x^{6}$ and $x^{7}-x^{5}$ agree at 0 ?

Solution: $\left(x^{7}+x^{6}\right)-\left(x^{7}-x^{5}\right)=x^{6}+x^{5}$. We have

$$
\lim _{x \rightarrow 0} \frac{x^{6}+x^{5}}{x^{4}}=0
$$

but $\lim _{x \rightarrow 0}\left(x^{6}+x^{5}\right) / x^{5}=1$ and $\lim _{x \rightarrow 0}\left(x^{6}+x^{5}\right) / x^{n}$ does not exist for any $n>5$. So the highest order to which $x^{7}+x^{6}$ and $x^{7}-x^{5}$ agree at 0 is 4 .

