Math 10860, Honors Calculus 2

Quiz 9
Solutions

1. State the precise definition of "sequence $\left(a_{n}\right)_{n=1}^{\infty}$ converges to limit L as $n \rightarrow \infty$ "

Solution: $\left(a_{n}\right)_{n=1}^{\infty}$ converges to L as $n \rightarrow \infty$ if for all $\varepsilon>0$ there exists N (or $N>0$ or $N \geq 0$ or \ldots) such that $n>N$ (or $n \geq N$) implies $\left|a_{n}-L\right|<\varepsilon$.
2. Using the definition, show that $(1 / \sqrt{n}) \rightarrow 0$ as $n \rightarrow \infty$.

Solution: Let $\varepsilon>0$ be given. Take $N=(1 / \varepsilon)^{2}$ (or anything larger). Then $n>N$ implies $n>(1 / \varepsilon)^{2}$ implies $1 / \sqrt{n}<\varepsilon$ implies $|1 / \sqrt{n}-0|<\varepsilon$, as required. (Note everything in sight is positive).
3. Suppose $\left(a_{n}\right) \rightarrow L$ as $n \rightarrow \infty$, with $L>0$. Prove that $\left(1 / a_{n}\right) \rightarrow 1 / L$ as $n \rightarrow \infty$.

Solution: Given $\varepsilon>0$ we want to find N such that $n>N$ implies

$$
\left|\frac{1}{a_{n}}-\frac{1}{L}\right|<\varepsilon
$$

or equivalently

$$
\frac{\left|a_{n}-L\right|}{\left|a_{n}\right||L|}<\varepsilon
$$

Now by $a_{n} \rightarrow L>0$ we know there is N_{1} such that $n>N_{1}$ implies $a_{n}>L / 2$ so $1 /\left(\left|a_{n} L\right|\right)<2 / L^{2}$; and there is N_{2} such that $n>N_{2}$ implies $\left|a_{n}-L\right|<\varepsilon L^{2} / 2$.
Taking $N=\max \left\{N_{1}, N_{2}\right\}$ (or anything larger) we have that $n>N$ implies

$$
\left|\frac{1}{a_{n}}-\frac{1}{L}\right|=\frac{\left|a_{n}-L\right|}{\left|a_{n}\right||L|}<\left(\frac{\varepsilon L^{2}}{2}\right)\left(\frac{2}{L^{2}}\right)=\varepsilon
$$

so $\left(1 / a_{n}\right) \rightarrow 1 / L$ as $n \rightarrow \infty$.

