
11 Inverse functions

In this short chapter we digress back to the material of the fall semester. There, we defined

functions, and showed how new functions could be formed from old, by addition, subtraction,

multiplication by a constant, multiplication, division, and, most importantly, composition. In

the chapter on integration, we introduced another technique to obtain a new function F from

an old function f : setting F (x) =
∫ x
a
f . Before exploiting the full power of that technique,

we need one more way of forming new functions from old: inverting.

11.1 Definition and basic properties

First, some background: recall the notation

f : A→ B,

standing for “f is a function with domain A, co-domain B”. Precisely, this means that f is a

set of pairs, with each element of A — the domain of f — occurring exactly once as a first

entry of a pair, and with the set of second entries being a subset of B — a co-domain of f .

Here are some special kinds of functions, that come up frequently:

Injective functions f : A→ B is injective or one-to-one if: no element of B appears more

than once as a second entry; or, equivalently,

if x, y ∈ A are different, then f(x), f(y) ∈ B are different.

Such an f is also called an injection or an injective map.

Surjective functions f : A → B is surjective or onto if: every element of B appears at

least once as a second entry; or, equivalently, if

for every y ∈ B there is a (not necessarily unique) x ∈ A with f(x) = y.

Another way to say this is that B is not just a co-domain for f , it is in fact the range —

the exact set of second entries of the pairs that comprise f . Such an f is also called a

surjection or a surjective map.

Bijective functions f : A → B is bijective if: f is both injective and surjective; or,

equivalently, if

for every y ∈ B there is a unique x ∈ A with f(x) = y.

Such an f is also called a bijection or a bijective map.
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Note that if

f : A→ B (10)

is an injective function, then there is naturally associated with f a bijective function, namely

f : A→ R (11)

where R ⊆ B is the range of f . The f ’s in (10) and (11) are the same function — they are

comprised of the same set of pairs. The only difference between them is in the notion with

which they are presented.180

For an injective, or a bijective, function f , we can form a new function g that we can

think of as “undoing the action” of f , by simply reversing all the pairs that make up f . For

example, if f(1) = 2, i.e., (1, 2) ∈ f , then we put the pair (2, 1) in g, i.e., set g(2) = 1. Is this

really a function? It is a set of ordered pairs, certainly. Suppose that some number b appears

twice in the set of ordered pairs, say as (b, a1) and (b, a2), with a1 6= a2. Then that means

that (a1, b) and (a2, b) are both in f (that’s how (b, a1) and (b, a2) got into g). The presence

of (a1, b) and (a2, b) in f then contradicts that f is injective.

We’ve just argued that if f is injective, then g is a function. On the other hand, if

f is not injective, then the process we have described does not produce a new function g.

Indeed, let (a1, b), (a2, b) ∈ f with a1 6= a2 witness the failure of injectivity of f . We have

(b, a1), (b, a2) ∈ g, witnessing the failure of g to be a function.

This all shows that the process of reversing all the pairs that make up a function f , to

form a new function g, makes sense if and only f is injective. We now note some further

properties.

• if f is injective, then so is g. Indeed, suppose g is not injective, and let (b1, a), (b2, a) ∈ g
with b1 6= b2 witness failure of injectivity of g. Then (a, b1), (a, b2) ∈ f witness the

failure of f to be a function, a contradiction;

• the range of f is the domain of g; the domain of f is the range of g (this is obvious);

• f ◦ g = id, where id : Domain(g) → Domaing is the identity function, consisting

of pairs whose first and second coordinates are the same; and g ◦ f = id, where

id : Domain(f) → Domainf is the identity function181 (this should also be obvious);

and

• if the operation that is used to produce g from f is applied to g (this makes sense, since

g is injective), then the result is f (this should also be obvious).

180Which begs the question: why not just present all functions in the form f : A → R, where A is the

domain and R the range? The issue is that it is often very difficult to pin down the exact range of a function,

so it is often convenient to simply present a definitely valid co-domain, such as R. Try, for example, finding

the exact range of f : R→ R defined by f(x) = x6 + x5 + 1.
181But note that the two identity functions here are not necessarily the same — there is no reason why

Domain(g) should equal Domain(f).
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We formalize all this, in a definition and a theorem. The theorem has already been proven; it

is just the above discussion, reframed in the language of the definition.

Definition of inverse function Let f = {(a, b) : a ∈ Domainf} be an injective function.

The inverse of f , denoted f−1, is defined by

f−1 = {(b, a) : (a, b ∈ f)}.

If f has an inverse, it is said to be invertible182.

Theorem 11.1. Let f be an injective function, with domain D and range R.

• f−1 is a function, with domain R and range D.

• f−1 is injective, and (f−1)−1 = f .

• f ◦ f−1 is the identity function on R (that is, for all x ∈ R, f(f−1(x)) = x).

• f−1 ◦ f is the identity function on D.

There’s a very easy way to construct the graph of f−1 from the graph of f : the set of

points of the form (b, a) (that comprises the graph of f−1) is the reflection across the line

x = y of the set of points of the form (a, b) (that comprises the graph of f). Because vertical

lines in the plane are mapped to horizontal lines by reflection across the line x = y, this leads

to an easy visual test for when a function is invertible: f is invertible if it’s graph passes the

Horizontal line test : every horizontal line in the plane crosses the graph of f at most

once.

Which functions are invertible?

• Certainly, if f is increasing183 on it’s domain, then it is invertible (and it is an easy

check that the inverse f−1 in this case is also increasing). On the other hand, if f is

only weakly increasing, then it may not necessarily be invertible (think of the constant

function).

• Similarly if f is decreasing, it’s invertible, and f−1 is decreasing too.

• There are certainly examples of invertible functions that are not monotone (increasing

or decreasing); consider, for example, f : [0, 1]→ [0, 1] given by

f(x) =


1 if x = 0

0 if x = 1

x if 0 < x < 1.
182For practical purposes, we can think of “invertible” and “injective” as synonymous.
183Recall: f : A→ R is increasing on A if x < y ∈ A implies f(x) < f(y); we sometimes say strictly increasing,

but our convention is that without any qualification, “increasing” is the same as “strictly increasing”; we use

weakly increasing to indicate x < y ∈ A implies f(x) ≤ f(y).
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• Even adding the assumption of continuity, there are still non-monotone invertible

functions; consider, for example, f : (0, 1) ∪ (1, 2)→ R given by

f(x) =

{
x if 0 < x < 1

3− x if 1 < x < 2.

If f is continuous, however, and defined on a single interval, then it seems reasonable to expect

that invertibility forces monotonicity. This is the content of our first significant theorem on

invertibility.

Theorem 11.2. Suppose that f : I → R is continuous on the interval I. If f is invertible,

then it is monotone (either increasing or decreasing).

Proof: We prove the contrapositive. Suppose that f is not monotone on I. That means that

• there is x1 < x2 with f(x1) ≤ f(x2) (witnessing that f is not decreasing), and

• there is y1 < y2 with f(y1) ≥ f(y2) (witnessing that f is not increasing).

If either f(x1) = f(x2) or f(y1) = f(y2) then f is not invertible. So we may assume that in

fact f(x1) < f(x2) and f(y1) > f(y2).

There are twelve possibilities for the relative order of x1, x2, y1, y2:

• y1 < y2 < x1 < x2

• x1 < y1 < y2 < x2

• x1 < x2 < y1 < y2

• y1 < x1 < y2 < x2

• y1 < x1 < x2 < y2

• x1 < y1 < x2 < y2

• y1 < x1 < x2 = y2

• x1 < y1 < x2 = y2

• y1 < x1 = y2 < x2

• y1 = x1 < y2 < x2

• y1 = x1 < x2 < y2

• x1 < x2 = y1 < y2

In each of these twelve cases, it is possible to find x < y < z with either
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• f(y) > f(x), f(z)

or

• f(y) < f(x), f(z)

For example, if y1 = x1 < y2 < x2, then we may take y = y2, x = x1 = y1 and z = x2 to

get f(y) < f(x), f(z). For a more involved example, consider y1 < y2 < x1 < x2. We have

f(y2) < f(y1). If f(x2) < f(y2) then we may take y = x1, x = y2 or y1 and z = x2 to get

f(y) < f(x), f(z), while if f(x2) > f(y2) we may take y = y2, x = y1 and z = x2 to again

get f(y) < f(x), f(z) (note that we won’t have f(x2) = f(y2), as this automatically implies

non-invertibility).

Suppose f(y) > f(x), f(z). Let m = max{f(x), f(z)}. By the intermediate value theorem

applied to the interval [x, y], f takes on the value (f(y) + m)/2 in (x, y). But by the

intermediate value theorem applied to the interval [y, z], f takes on the value (f(y) +m)/2

in (y, z). Since (x, y) and (y, z) don’t overlap, this shows that f takes on the same value at

least two different times, so is not invertible.

Here’s an alternate, direct, proof, that uses a shorter case analysis. Suppose that f is

invertible. Then it is injective, so x 6= y implies f(x) 6= f(y). Fix y ∈ I that is not an

endpoint; let I1 be {x ∈ I : X < y} and I2 be {z ∈ I : z > y}.
It cannot be the case that there is some x ∈ I1 with f(x) > f(y), and some x′ ∈ I1

with f(x′) < f(y); for then we could easily find x′ < y′ < z′ with either f(y′) > f(x′), f(z′)

or f(y′) < f(x′), f(z′), and the IVT argument from above gives a contradiction. So either

f(x) > f(y) for all x ∈ I1, or f(x) < f(y) for all x ∈ I1. Similarly, either f(z) > f(y) for all

z ∈ I2, or f(z) < f(y) for all z ∈ I2.

If either

• f(x) > f(y) for all x ∈ I1 and f(z) > f(y) for all z ∈ I2

or

• f(x) < f(y) for all x ∈ I1 and f(z) < f(y) for all z ∈ I2

then we could easily find x′ < y′ < z′ with either f(y′) > f(x′), f(z′) or f(y′) < f(x′), f(z′),

for a contradiction.

If f(x) > f(y) for all x ∈ I1 and f(z) < f(y) for all z ∈ I2, then we claim that f is

monotone decreasing. Indeed, consider a < b ∈ I. If one of a, b is y, we immediately have

f(a) > f(b). If a < y < b, we immediately have f(a) > f(y) > f(b), so f(a) > f(b). If

a, b < y, and f(a) < f(b), then we x′ < y′ < z′ with f(y′) > f(x′), f(z′), a contradiction, so

f(a) > f(b) in this case. Similarly, if a, b > y we also get f(a) > f(b).

Finally, in the case If f(x) < f(y) for all x ∈ I1 and f(z) > f(y) for all z ∈ I2, a similar

agument gives that f is monotone increasing.

A consequence of the first proof above is the following useful fact:
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If f : I → R is not monotone, then there x < y < z ∈ I with either f(y) >

f(x), f(z) or f(y) < f(x), f(z).

Note that this fact does not need continuity of f .

The proof of Theorem 11.2 uses IVT, which raises a nice challenge: in Q-world, find an

example of a function f defined on an interval, that is continuous and invertible, but not

monotone. (Such an example would show that the completeness axiom is necessary to prove

Theorem 11.2).

Suppose that f : I → R is continuous and invertible, and so, by Theorem 11.2, monotone.

We can easily determine the range of f , and so the domain of f−1. The verification of all of

these are left as exercises.

• if I = [a, b] and f is increasing, then Range(f) = [f(a), f(b)], while if f decreasing,

then Range(f) = [f(b), f(a)];

• if I = (a, b) or (−∞, b) or (a,∞) or (−∞,∞), then, whether f is increasing or

decreasing, we have Range(f) = (inf{f(x) : x ∈ I}, sup{f(x) : x ∈ I}) (where here

we allow inf{f(x) : x ∈ I} to possibly take the value −∞, and sup{f(x) : x ∈ I} to

possibly take the value −∞);

• and if I is a mixed interval (open at one end, closed at the other end), then we do

the obvious thing: for example, if I = [a, b) and f is decreasing, then Range(f) =

(inf{f(x) : x ∈ I}, f(a)].

11.2 The inverse, continuity and differentiability

The inverse function behaves well with respect to continuity and differentiability, as we now

show.

Theorem 11.3. If I is an interval, and f : I → R is continuous on I, and invertible, then

f−1 is also continuous on its whole domain.

Proof: By Theorem 11.2, we know that f is either increasing or decreasing on I. We can

assume that f is increasing; if it is decreasing, we obtain the result by considering (increasing)

−f .

Given b ∈ Domain(f−1), we want to show that limx→b f
−1(x) = f−1(b). Now there is

a ∈ Domain(f) with f(a) = b, so f−1(b) = a. Given ε > 0, we want to find a δ > 0 such

that f(a)− δ < x < f(a) + δ implies a− ε < f−1(x) < a+ ε. The picture below, taken from

Spivak, should both make the choice of notation clear, and suggest how to proceed:
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Let δ be small enough that

f(a− ε) < f(a)− δ < b = f(a) < f(a) + δ < f(a+ ε)

(since f(a+ ε)− f(a) > 0 and f(a)− f(a− ε) > 0, such a δ can be found — just take δ to

be anything smaller than the minimum of f(a+ ε)− f(a) and f(a)− f(a− ε)).
For f(a)− δ < x < f(a) + δ we have f(a− ε) < x < f(a+ ε) and so (using that f−1 is

increasing) we that get a− ε < f−1(x) < a+ ε, as required.

What about differentiability and the inverse? By considering the graph of an increas-

ing, continuous, f , at a point (a, f(a)), where f is differentiable, and by then considering

the reflection of the graph across x = y, it is fairly easy to form the hypothesis that

(f−1)′(f(a)) is well-defined — unless f ′(a) = 0, when it appears that the tangent line through

(f(a), f−1(f(a))) is vertical.184 In other words, it appears that for b in the domain of f−1, we

have that (f−1)′(b) is well defined unless f ′(f−1(b)) = 0.

Differentiating both sides of (f ◦ f−1)(x) = x we get f ′(f−1(x))(f−1)′(x) = 1, that is,

(f−1)′(x) =
1

(f ′(f−1(x))
,

suggesting what the derivative of f−1 should be at b (as long as f ′(f−1(b)) 6= 0) (“suggesting”

because we don’t a priori know that f−1 is differentiable at b).

All this can be made precise.

Theorem 11.4. Suppose I is an interval, and that f : I → R is continuous on I, and

invertible. Suppose further that for some b in the domain of f−1, f is differentiable at f−1(b).

• If f ′(f−1(b)) = 0 then f−1 is not differentiable at b.

184Draw some graphs! Convince yourself.
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• If f ′(f−1(b)) 6= 0 then f−1 is differentiable at b, with derivative 1/(f ′(f−1(b))).

Proof: We consider the first bullet point first: Suppose (for a contradiction) that f−1 is

differentiable at b. We apply the chain rule to conclude

f ′(f−1(b))(f−1)′(b) = 1

but this is impossible since f ′(f−1(b)) = 0.

We now move on to the second bullet point. Let a be such that f(a) = b. We have

f−1(b+ h)− f−1(b)

h
=
f−1(b+ h)− a

h
=
k

h

where k = k(h) is such that f−1(b+ h) = a+ k. We also have f(a) + h = b+ h = f(a+ k),

so the we have
k

h
=

k

f(a+ k)− f(a)
=

1(
f(a+k)−f(a)

k

) .
Because f−1 is continuous, we have limh→0 f

−1(b+ h) = f−1(b) = a, solimh→0 k = 0. So as h

approaches 0, so does k, and (f(a+ k)− f(a))/k approaches f ′(a) = f ′(f−1(b)) (which exists

by hypothesis). Since (also be hypothesis) f ′(f−1(b)) is non-zero, we can put everything

together to get

(f−1)′(b) = lim
h→0

f−1(b+ h)− f−1(b)

h
=

1

f ′(f−1(b))
.

What about the interaction between invertibility and integrability? Certainly, if f :

[a, b] → R is continuous and invertible (say, for simplicity, increasing), then since f−1 is

continuous on [f−1(a), f−1(b)], it is integrable over that range. In all the applications that

are coming up, that is all that we will need. What happens to f−1 vis a vis integrability,

when f is only assumed to be integrable and invertible, will be explored in an exercise.
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