
13 Primitives and techniques of integration

This section is concerned with integration or antidifferentiation — the process of finding a

function whose derivative is some given function.

Definition of primitive A function F is a primitive of a function f , or an antiderivative

of f , if F ′ = f . The notation we use to denote this relationship is either

F =

∫
f (or

∫
f = F )

(when working with some generic function f), or∫
f(x) = F (x) (or

∫
f(x) = F (x))

(when working with a specific, named function, given by a certain rule).

Here is why primitives are useful:

if F is a primitive of f , on an interval that includes [a, b], and if f is integrable

on [a, b]212, then by the fundamental theorem of calculus (part 2) we have∫ b

a

f = F (b)− F (a).

The expression F (b)− F (a) comes up so frequently, it has a few different notations:

F (b)− F (a) = F |ba = F (x)|bx=a.

A number of important comments are in order about the definition of a primitive. We

give a few examples, and make the comments along the way.

Example 1 x3 + 3x+ π is a primitive of 3x2 + 3 (obviously!) and so∫
(3x2 + 3) dx = x3 + 3x+ π.

But equally obviously ∫
(3x2 + 3) dx = x3 + 3x+ e.

The critical comment to be made here is that
212This is a subtle but important point. FTOC (part 2) says that if F satisfies F ′ = f on [a, b] and if f

is integrable on [a, b] then
∫ b

a
f = F (b) − F (a). If we don’t add the assumption that f is integrable, then

we cannot draw this conclusion. There are examples of differentiable functions whose derivatives are not

integrable. If V is such a function (I use V here because the first example of such a function was discovered

by Volterra, and is called Volterra’s function) then while it is true to say that V =
∫
V ′ (V is a primitive of

V ′), it is not true to say that
∫ b

a
V ′ = V (b)− V (a), since the left-hand side exists but the right-hand side

doesn’t. Remember that the FTOC part 2 says that if there’s a function g with g′ = f and f is integrable

then
∫ b

a
f = g(b)− g(a).
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the “=” in
∫
f = F is not a true equality!

If it was, from
∫

(3x2 + 3) dx = x3 + 3x+ π and
∫

(3x2 + 3) dx = x3 + 3x+ e we would

conclude the patently absurd

x3 + 3x+ π = x3 + 3x+ e.

It is very important to remember that “
∫
f = F” is actually shorthand for “F ′ = f”,

and not an assertion that two functions are identical. This is a clear abuse of the “=”

sign, but hopefully one you can live with. We’ll see some odd paradoxes that can arise

when we forget this.213

Example 2 −2/(1 + tan(x/2)) is a primitive of 1/(1 + sinx). This is obvious, no? Probably

not; but once it has been asserted, it can be easily checked, by differentiating F (x) =

−2/(1 + tan(x/2)). After a lot of algebra, the derivative can be massaged into the form

1/(1 + sin x).

The comment to be made here is that

unlike finding derivatives, which is a mechanical process, finding antideriva-

tives is often hard, always requires ingenuity and usually (see a later example)

is practically impossible.

See https://xkcd.com/2117/ for a could summary of the situation!

Example 3 If F is a primitive of f , so is F + c for any constant c.

The comment to be made here is that

A function with an antiderivative, has infinitely many antiderivatives.

It is tempting to at this point try to prove a theorem, along the lines of: if F is a

primitive of f , then all primitives of f are of the form F + c for some constant c. We

won’t try to prove this, because it is false. (See later examples).

Another comment is in order here:

There is no great value in writing “
∫
f = F + C”.

The “+C” adds nothing — since “
∫
f = F” is shorthand for “F ′ = f”, adding the

“+C” (to convey “(F +C)′ = f”) is just saying “by the way, the derivative of a constant

function is 0”.

In the next example, we’ll see that not only is there no value in writing “+C”, it can

sometimes be misleading.

213Spivak gets over this issue by defining
∫
f to be the set of all primitives of f ; so F ′ = f translates to

F ∈
∫
f .
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Example 4
∫
dx/x 6= log x. This seems strange. Of course (log x)′ = 1/x. The (somewhat

subtle) issue here is that in an equation like “F ′ = f”, asserting that two functions

are identical, if there is no specific statement of domains, then our convention is to

assume that both F ′ and f are each defined on their natural domain — the largest

subset of the the reals for which the rule defining the function makes sense. In the

equation “(log x)′ = 1/x”, the domain of log x is (0,∞), and since log is differentiable

at all points in its domain, the domain of (log x)′ is (0,∞). On the other hand, the

domain of 1/x is R \ {0}. So, without qualification on the domains on which the two

sides are being considered, it is incorrect to say (log x)′ = 1/x.

It is, on the other hand, perfectly correct to say

on (0,∞), (log x)′ = 1/x, so
∫
dx/x = log x.

What about on (−∞, 0)? This is the domain of log(−x), and (by the chain rule) the

derivative of log(−x) is 1/x. So it is correct to say

on (−∞, 0), (log(−x))′ = 1/x, so
∫
dx/x = log(−x).

This leads to some examples of primitives of 1/x:

• the function that maps x to log x if x > 0 and log(−x) if x < 0; this can be more

compactly expressed as x 7→ log |x|;

• for any real constant C, the function that maps x to log |x|+ C;

• the function that maps x to 3 + log x if x > 0 and 12π2 + log(−x) if x < 0.

The comment that relates to this example is that

if the domain of f is not an interval, then

• one has to be careful about
∫
f , and

• it’s not true that any two antiderivatives of f differ by a constant.

We mentioned earlier that it it is not true that if F is a primitive of f , then all primitives

of f are of the form F + c for some constant c. In light of the current example, there is

a natural modification to this statement, that is indeed true, and can easily be shown

to be true:

if f is continuous on its domain, and that domain is an interval, and if F

is a primitive of f , then all primitives of f are of the form F + c for some

constant c. If the domain of f is a union of intervals, and if F and G are two

primitives of f , then F −G is constant on each of the intervals.
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Example 5 It seems hard to find an antiderivative of e−x
2

(for more on this, see the discussion

of elementary functions below). However, this function has a very simple antiderivative:∫
e−x

2

dx =

∫ x

c

e−t
2

dt

where c is any constant (since, by the fundamental theorem of calculus, the derivative

of
∫ x
c
e−t

2
dt with respect to x is e−x

2
).

The comment to be made on this example is:

every continuous function x 7→ f(x) has a primitive, namely
∫ x
c
f(t) dt.

Of course, this is not a particularly useful primitive: if we try to use it to calculate a

definite integral like
∫ b
a
f(x) dx, we get∫ b

a

f(x) dx =

∫ b

c

f(x) dx−
∫ a

c

f(t) dt,

which really doesn’t help.

The last example above shows that while finding primitives is easy, what we really want to

know about is finding simple, compact expressions for primitives. Computer algebra systems

can do this very well: for example, entering

“antiderivative of 1/(1 + sin x)”

into Wolfram Alpha yields the answer

“
2 sin(x/2)

sin(x/2) + cos(x/2)
+ constant′′.

(This is not quite the same as −2/(1+tan(x/2)) that we mentioned earlier; but a little algebra

shows that the two expressions −2/(1 + tan(x/2)) and 2 sin(x/2)/(sin(x/2) + cos(x/2)) differ

from each other by a universal constant).

Given that computers are very good at finding compact expressions for primitives, it’s

natural to ask why it’s useful to spend time, as we will do, developing techniques to find

primitives by hand. Here are three reasons why being able to find primitives is useful:

1. knowing something of the theory of finding compact expressions for primitives, allows

one to troubleshoot when things go wrong using a computer algebra system (as it

inevitably will);

2. underlying some of the techniques we describe (in particular integration by parts and

integration by partial fractions) are valuable theorems, that are useful to know; and

3. questions about finding primitives they come up on exams, like the GRE.
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So, out goal for a while will be to develop techniques to find compact expressions for

primitives. “Compact” here means that we are looking for elementary functions as primitives:

• rational functions;

• exponential, log, trigonometric (and so hyperbolic) functions and their inverses;

• algebraic functions: functions g satisfying a polynomial equation with rational functions

as coefficients (so, for example, functions that extract roots); and

• any function obtained from the previous functions by finitely many additions, subtrac-

tions, multiplications, divisions, and compositions.

Essentially, elementary functions are those that can be described in finite time using any

combination of the functions 1, x, sin, cos, tan, arcsin, arccos, arctan, exp and log. It is a

theorem (though a very hard one) that the function x 7→ e−x
2

does not have an elementary

primitive; nor does sinx2, nor
√

1 + x3. In fact, “most” elementary functions do not have

elementary primitives. But still, it will prove very worthwhile to think about those functions

that do have elementary primitives; and that will be the topic of the next few sections.

13.1 Techniques of integration

There are five basic techniques of integration:

• Know lots of integrals!

• Linearity

• Integration by parts

• Integration by substitution

• Integration by partial fractions

The first two can be discussed quickly. First, know lots of integrals! Every differentiation,

when turned on its head, leads to an integration formula, and the more of these you can

recognize quickly, the better you will be at integration. Here are some of the integrals we

have seen so far:

•
∫
xndx = xn+1/(n+ 1) for n ∈ N, as long as n 6= −1.

•
∫
dx/x = log |x| (as long as x 6= 0).

•
∫
xadx = xa+1/(a+ 1) for real a 6= −1 (as long as x ∈ (0,∞)).

•
∫

sinxdx = − cosx.
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•
∫

cosxdx = sinx.

•
∫

sec2 xdx = tanx.

•
∫
exdx = ex.

•
∫

dx√
1−x2 = sin−1(x) (as long as −1 < x < 1).

•
∫

dx
1+x2 = tan−1(x).

•
∫

dx√
x2+1

= sinh−1(x) = log
(
x+
√
x2 + 1

)
.

•
∫

dx√
x2−1

= cosh−1(x) = log
(
x+
√
x2 − 1

)
(as long as x ≥ 1). But for this last example,

it is easy to see that if x < −1 then, since x+
√
x2 − 1 < 0, we get log−

(
x+
√
x2 − 1

)
as an antiderivative of 1/(

√
x2 − 1); so in fact∫

dx√
x2 − 1

= log |
(
x+
√
x2 − 1

)
| (as long as |x| > 1).

Second, linearity: if F =
∫
f and G =

∫
g then it is an easy check that aF + bG =∫

(af + bg).

The other three techniques, integration by parts, substitution and partial fractions, require

significantly more discussion.

13.2 Integration by parts

Suppose f ′, g′ are both continuous (so all integrals below exist). We have

(fg)′ = f ′g + fg′ or fg′ = (fg)′ − f ′g.

An antiderivative of (fg)′ is fg. Suppose A =
∫
f ′g is an antiderivative of f ′g. Then

(fg − A)′ = (fg)′ − f ′g = fg′.

In other words, fg − A is an antiderivative of fg′. The traditional way to write this is∫
fg′ = fg −

∫
f ′g

or ∫
f(x)g′(x)dx = f(x)g(x)−

∫
f ′(x)g(x)dx.

This identity is referred to as integration by parts, and allows the calculation of one integral

(
∫
fg′) to be reduced to the calculation of another integral (

∫
f ′g).

Integration by parts has a definite integral form: since

(fg)′ = f ′g + fg′,

319



from the fundamental theorem of calculus (part 2) we get that, as long as [a, b] is fully

contained in the domains of both f and g,∫ b

a

(f ′g + fg′) = (fg)ba

or ∫ b

a

f(x)g′(x)dx = f(x)g(x)|bx=a −
∫ b

a

f ′(x)g(x)dx.

The key to applying integration by parts is to identify that the function to be integrated

can be decomposed into the product of two functions, one of which is easy to differentiate

(this will play the role of f), and the other of which has an obvious antiderivative (this will

play the role of g′).

As an example, consider
∫
x log x dx. Here we take f(x) = log x (so f ′(x) = 1/x) and

g′(x) = x (so one valid choice for g is g(x) = x2/2). We have∫
x log x dx =

x2 log x

2
−
∫
x

2
dx =

x2 log x

2
− x2

4
,

a result which can easily be checked by differentiating.

More generally, consider
∫
xa log x dx with a 6= −1. Here we again take f(x) = log x (so

f ′(x) = 1/x) and g′(x) = xa, so one valid choice for g is g(x) = xa+1/(a+ 1)). We have∫
x log x dx =

xa+1 log x

a+ 1
−
∫

xa

a+ 1
dx =

xa+1 log x

a+ 1
− xa+1

(a+ 1)2
.

What about a = −1? Again taking f(x) = log x, f ′(x) = 1/x, g′(x) = 1/x, g(x) = log x

(Note: we don’t need log |x| here, since the domain of (log x)/x is (0,∞), we get∫
log x

x
dx = log2 x−

∫
log x

x
dx.

It appears that we have gone in a circle! But no: we have an (easy) equation which we can

solve for
∫

(log x)/x dx, that yields ∫
log x

x
dx =

log2 x

2
,

again a result which can easily be checked by differentiating.

We need to be a little careful in justifying the above, because of the previous observation

that the “=” in F =
∫
f has to be treated with care. Formally what we are doing is saying:

“if A is an antiderivative of (log x)/x, then from integration by parts, log2 x − A is also

an antiderivative of
∫

log x
x

dx. But now, since (log x)/x is a continuous function defined

on an interval, that says that A and log2 x − A differ by a constant, or in other words,

A = (log2 x)/2 + C for some constant C”.
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Other manipulations that we do with integral equalities can be just as easily be justified

formally; we won’t do so any more, unless there is an extra subtlety that needs to be pointed

out.

Hidden inside the last example was the special case a = 0, where we considered
∫

log x dx

— which isn’t obviously the product of two functions — and applied integration by parts

by “introducing” the function g′(x) = 1 into the picture. More generally, for any f with f ′

continuous, we have ∫
f =

∫
f · 1 = xf −

∫
xf ′.

For example ∫
tan−1 x dx = x tan−1 x−

∫
xdx

1 + x2
= x tan−1 x− 1

2
log(1 + x2).

Integration by parts sometimes reduces a more complicated integral to a less complicated

one, that still needs some non-trivial works to solve; sometimes even another iteration of

integration by parts.

Example: For n ≥ 0, n ∈ N, set In =
∫
xnex dx. We have I0 = ex rather easily. For n > 0,

we use integration by parts with f(x) = xn, g′(x) = ex to get

In = xnex − n
∫
xn−1ex dx = xnex − nIn−1.

This is a reduction formula that allows us to calculate In recursively:

• I0 = ex

• I1 = xex − 1 · I0 = xex − ex = ex(x− 1)

• I2 = x2ex − 2ex(x− 1) = ex(x2 − 2x+ 2)

• I3 = x3ex − 3ex(x2 − 2x+ 2) = ex(x3 − 3x2 + 6x− 6)

• I4 = x4ex − 4ex(x3 − 3x2 + 6x− 6) = ex(x4 − 4x3 + 12x2 − 24x+ 24)

and in general (this is an easy induction) In = exPn(x) where Pn(x) is a polynomial of degree

n defined recursively by P0(x) = 1 and Pn = xn − nPn−1(x).

We’ll see plenty more reduction formulae.

Notice that in this example, we had a choice: both xn and ex are easy both to integrate

and differentiate. There’s no golden rule for what to do in this case. Sometimes one choice

works and the other doesn’t, sometimes both do, and sometimes neither work. With lots of

practice you should start to develop an intuition; but for the moment, a good rule-of-thumb

is:

if one of the functions involved is a polynomial, try to make the choice that

reduces the degree of the polynomial.
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This doesn’t always work, but often does.

Integration by parts is sometimes symbolically written∫
udv = uv −

∫
vdu

Here “u” can be thought of as the part of the function that’s easy to differentiate (so, f ; its

derivative appears as “du”), while “dv” can be thought of as the part of the function that

has an easy antiderivative (so g′; its antiderivative appears as “v”).

For an example in this language, consider An =
∫

dx
(x2+1)n

dx, n ≥ 0. We have A0 = 1

and A1 = arctanx. For general n ≥ 2, set u = 1/(1 + x2)n, dv = dx, so v = x and

du = −2nxdx/(1 + x2)n+1. We get

An =
x

(1 + x2)n
+ 2n

∫
x2

(1 + x2)n+1
dx

=
x

(1 + x2)n
+ 2n

∫
(1 + x2)− 1

(1 + x2)n+1
dx

=
x

(1 + x2)n
+ 2nAn − 2nAn+1.

So

An+1 =
x

2n(1 + x2)n
+

(2n− 1)

2n
An

(valid for n ≥ 1). For example, at n = 1 we get∫
dx

(x2 + 1)2
=

x

2(1 + x2)
+

arctanx

2
.

For the rest of this section we’ll use an integration by parts reduction formula to derive

Wallis’ formula for π, and see the connection between Wallis’ formula and the binomial

coefficients.

We begin by defining, for integers n ≥ 0, Sn :=
∫ π/2

0
sinn xdx. We have

S0 =
π

2
, S1 =

∫ π/2

0

sinxdx = 1,

and for n ≥ 2 we get from integration by parts (taking u = sinn−1 x and dv = sinxdx, so

that du = (n− 1) sinn−2 x cosxdx and v = − cosx) that

Sn = (sinn−1 x)(− cosx)|π/2x=0 −
∫ π/2

0

−(n− 1) cosx sinn−2 x cosxdx

= (n− 1)

∫ π/2

0

cos2 x sinn−2 xdx

= (n− 1)

∫ π/2

0

(1− sin2 x) sinn−2 xdx

= (n− 1)Sn−2 − (n− 1)Sn,
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which leads to the recurrence relation

Sn =
n− 1

n
Sn−2 for n ≥ 2.

Iterating the recurrence relation until the initial conditions are reached, we get that

S2n =

(
2n− 1

2n

)(
2n− 3

2n− 2

)
· · ·
(

3

4

)(
1

2

)
π

2

and

S2n+1 =

(
2n

2n+ 1

)(
2n− 2

2n− 1

)
· · ·
(

4

5

)(
2

3

)
1.

Taking the ratio of these two identities and rearranging yields

π

2
=

(
2

1

)(
2

3

)(
4

3

)(
4

5

)
· · ·
(

2n

2n− 1

)(
2n

2n+ 1

)
S2n

S2n+1

.

Now since 0 ≤ sinx ≤ 1 on [0, π/2] we have also

0 ≤ sin2n+1 x ≤ sin2n x ≤ sin2n−1 x,

and so, integrating and using the recurrence relation, we get

0 ≤ S2n+1 ≤ S2n ≤ S2n−1 =
2n+ 1

2n
S2n+1

and so

1 ≤ S2n

S2n+1

≤ 1 +
1

2n
.

This says that by choosing n large enough, the ratio S2n/S2n+1 can be made arbitrarily close

to 1, and so the product(
2

1

)(
2

3

)(
4

3

)(
4

5

)
· · ·
(

2n

2n− 1

)(
2n

2n+ 1

)
can be made arbitrarily close to π/2 by choosing n large enough. This fact as usually

expressed by saying that π/2 can be described by an “infinite product”:

π

2
=

(
2

1

)(
2

3

)(
4

3

)(
4

5

)(
6

5

)(
6

7

)
· · · .

This infinite product was probably first written down by John Wallis in 1655. Wallis’ other

claim to fame is that he was probably the first mathematician to use the symbol “∞” for

infinity.

Note that Wallis’ formula is not a particularly good way to actually estimate π; because

we have 1 ≤ S2n/S2n+1 ≤ 1 + 1/2n, it turns out that to get an estimate of π correct to k

decimal places, we need to take n ≈ 10k. This is similar to the rate of convergence of the

approximation based on arctan 1.

323



Wallis’ formula can be used to estimate the binomial coefficient
(

2n
n

)
. Indeed,(

2n

n

)
=

(2n)(2n− 1)(2n− 2) · · · (3)(2)(1)

(n)(n− 1) · · · (2)(1)(n)(n− 1) · · · (2)(1)

= 2n
(2n− 1)(2n− 3) · · · (3)(1)

(n)(n− 1) · · · (2)(1)

= 22n (2n− 1)(2n− 3) · · · (3)(1)

(2n)(2n− 2) · · · (4)(2)

=
22n

√
2n+ 1

√
(2n+ 1)(2n− 1)(2n− 1)(2n− 3)(2n− 3) · · · (3)(3)(1)

(2n)(2n)(2n− 2)(2n− 2) · · · (4)(4)(2)(2)

and so

√
n
(

2n
n

)
22n

=

√
n

2n+ 1

√
(2n+ 1)(2n− 1)(2n− 1)(2n− 3)(2n− 3) · · · (3)(3)(1)

(2n)(2n)(2n− 2)(2n− 2) · · · (4)(4)(2)(2)

For large enough n,
√
n/(2n+ 1) can be made arbitrarily close to 1/

√
2, and the other term

on the right-hand side above can (by Wallis’ formula) be made arbitrarily close to
√

2/π, so

the whole right-hand side can be made arbitrarily close to
√

1/π. In other words,

lim
n→∞

√
n
(

2n
n

)
22n

=
1√
π
.

(Note that this is not a very helpful limit: at n = 10, 000 the expression
√
n
(

2n
n

)
/22n evaluates

to around 0.564183, whereas 1/
√
π ≈ 0.564189).

This limit is usually written214(
2n
n

)
22n
∼ 1√

nπ
as n→∞;

here I am introducing the symbol “∼”, read as “asymptotic to”, which is defined as follows:

f(n) ∼ g(n) as n→∞

if limn→∞ f(n)/g(n) = 1. The sense is that f and g grow at essentially the same rate as n

grows. Note that this does not say that f and g get closer to one another absolutely as n

grows; for example n2 ∼ n2 + n as n→∞, but the difference between the two sides goes to

infinity too. It’s the relative (or proportional) difference that gets smaller.

This estimate for
(

2n
n

)
has a connection to probability. If a fair coin is tossed 2n times,

then the probability that it comes up heads exactly k times is
(

2n
k

)
/22n. This quantity is at

its largest when n = k (some easy algebra), at which point it takes value very close to 1/
√
nπ

(as we have just discovered).

214Another way to write this is: π = limn→∞
16n

n(2n
n )

2 .

324



Some easy algebra also suggests that we should expect
(

2n
k

)
/22n to be quite close to(

2n
n

)
/22n for k fairly close to n. If this is the case, then we might expect that the probability

of getting some number of heads between n − n0 and n + n0 to be somewhat close to 2n0

times the probability of getting n heads, or somewhat close to 2n0/
√
nπ. If this is true, then

by the time n0 gets up to somewhere around
√
n, the probability of getting some number of

heads between n− n0 and n+ n0 should be somewhat close to 1.

This intuition can be made precise, in a result called the central limit theorem, one of the

most important results in probability. One very specific corollary of the central limit theorem

is that if a coin is tossed 2n times, then for any constant C the probability of getting between

n− C
√
n and n+ C

√
n heads is at least 1− e−C2/3. For example, with n = 1, 000, 000 and

C = 5, on tossing a coin 2, 000, 000 times, the probability of getting between 995, 000 and

1, 005, 000 heads is at least 1− e−25/3 ≈ .99976.

13.3 Integration by substitution

Just as the product rule led to integration by parts, the chain rule also leads to an integration

principle, integration by substitution.

Integration by substitution, easy case If f, g′ are both continuous (so all integrals in

question exist), and if F is a primitive of f , then (since (F ◦ g)′(x) = F ′(g(x))g′(x) =

f(g(x))g′(x)) we have∫
f(g(x))g′(x) dx = (F ◦ g)(x) = F (g(x)).

The key to applying this form of integration by substitution is to recognize that the integrand

f(g(x))g′(x) can be written as the product of two things — one, f(g(x)), is a function f of

some basic building block g, and the other, g′, is the derivative of the basic building block. If

f has a known antiderivative F , then the integral can be expressed in terms of this.

Consider, for example,
∫

tanx dx. Re-expressing as∫
sinx

cosx
dx = −

∫
− sinx

cosx
,

there are obvious choices for f (f(x) = 1/x, so F (x) = log |x|), and g(x) = cosx, with

g′(x) = − sinx. This leads to∫
sinx

cosx
dx = −

∫
− sinx

cosx
= − log | cosx| = log | secx|.

Notice that we multiplied the integrand by −1 to “massage” it into the correct form: initially,

the integrand was almost of the form f(g(x))g′(x), but not quite (we will return to this issue

later).

As another example, consider ∫
xdx

(1 + x2)n
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for n = 1, 2, . . .. Recognizing that the integrand is mostly a function of 1 + x2, and that the

rest of the integral is almost the derivative of 1 + x2, we take

f(x) =
1

xn
and g(x) = 1 + x2.

Noting that g′(x) = 2x and

F (x) =

∫
f(x) dx =

{
log |x| if n = 1
−1

(n+1)xn+1 if n ≥ 2,

we get ∫
xdx

(1 + x2)n
=

1

2

∫
2xdx

(1 + x2)n
=

{
log(1+x2)

2
if n = 1

−1
(n+1)(1+x2)n+1 if n ≥ 2.

There is a shorthand for this process. If we make a change of variables — a substitution —

u = g(x), and (formally) write du = g′(x) dx, then, re-expressing
∫
f(g(x))g′(x) dx entirely

in terms of the new variable u, the integral becomes∫
f(u) du,

which is F (u), or, going back to expressing in terms of variable x, F (g(x)). The message here

is: if we simply make the substitution u = g(x), re-express the integral in terms of u solve (as

a function of u), then go back to expressing in terms of variable x, we get the correct answer

— this, even though the expression “du = g′(x) dx” doesn’t (yet) have any official meaning.

This shorthand allows integration by substitution to be done quite quickly, without having

to explicitly identify f , g, et cetera.

As an example: via the substitution u = log x (so du = dx/x) we have∫
(log x)2

x
dx =

∫
u2du =

u3

3
=

(log x)3

x
.

In all examples so far we were extremely fortunate that either (as in the last example) one

part of the integrand was easily recognizable as the derivative of another, or (as in the other

examples), that became the case after a simple manipulation. We now present a more general

substitution method that is far more versatile, in that in can (in principle) be used for any

integrand. The idea is that we for (essentially) any function f that is given, and (essentially)

any function g (of our choosing), we can (usually) express f(x) in the form (H ◦ g)(x)g′(x)

for a suitably constructed function H, and then use “easy” integration by substitution to

complete the integration.

Indeed,

f(x) =
f(x)

g′(x)
g′(x)

=
f(g−1(g(x)))

g′(g−1(g(x)))
g′(x)

=

(
f ◦ g−1

g′ ◦ g−1

)
(g(x))g′(x),
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all steps valid as long as:

• g is differentiable (so continuous)

• g′ is never 0, and

• g−1 exists (so, since g continuous, g must be monotone, assuming that we are working

on some interval).

From this we get:

Integration by substitution, general case If f and g′ are both continuous (so all inte-

grals in question are certain to exist), and if g is invertible, with non-zero derivative,

and if H is a primitive of
f ◦ g−1

g′ ◦ g−1
,

then (since

(H ◦ g)′(x) = H ′(g(x))g′(x)

=
f(g−1(g(x)))

g′(g−1(g(x)))
g′(x)

=
f(x)

g′(x)
g′(x)

= f(x)

we have ∫
f(x) dx = (H ◦ g)(x) = H(g(x)).

As a simple example, suppose that we are considering
∫
x/(1 + x2) dx, and we do not

recognize that after a simple manipulation the integrand becomes of the form f(g(x))g′(x).

We have at our disposal the general method of integration by substitution, which allows us

to re-express the integrand, by “substituting out” any expression that we may choose. A

general rule-of-thumb to keep in mind for integration by substitution is:

identify any awkward/prominent/annoying part of the integrand, and try to

substitute that out.

Here, the awkward/prominent/annoying part of the integrand is the 1 + x2, so we set

g(x) = 1 + x2. We have to be a little careful now, since g is not an invertible function either

on its domain, or on the domain of the integrand. It becomes invertible if we restrict it to

either non-negative reals, or non-positive reals, so let us do that.
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First, consider the problem on non-negative reals. We have g(x) = 1 + x2, g′(x) = 2x215

and g−1(x) =
√
x− 1216. So

f ◦ g−1

g′ ◦ g−1
(x) =

√
x−1
x

2
√
x− 1

=
1

2x

which has primitive (log x)/2 (note x non-negative here, so we don’t need the absolute value).

So we may take H(x) = (log x)/2, and get that

H(g(x)) =
log(1 + x2)

2

is an antiderivative of the original function f , at least when we restrict to the domain of

positive reals. A similar calculation gives that an antiderivative of f is (1/2) log(1 + x2) on

negative reals (now g−1 = −
√
x− 1, but the negative sign disappears in the calculation of

(f ◦ g−1)/(g′ ◦ g−1), since it appears in numerator and denominator).

As with the easy substitution method, there is a shorthand way to proceed. Start with

the substitution u = g(x), and then re-express everything in the integrand in terms of u:

• u = g(x) so x = g−1(u) (requiring g to be invertible)

• du = g′(x)dx so dx = du/g′(x) = du/g′(g−1(x)) (requiring g′ not to ever be 0)

• f(x) = f(g−1(u)).

The integral becomes ∫
(f ◦ g−1)(u)

(g′ ◦ g−1)(u)
du,

so if H is a primitive of (f ◦ g−1)/(g′ ◦ g−1), then the integral is H(u), or, in terms of x,

H(g(x)).

As a simple example, consider
∫
f(ax+ b) dx, where a, b are constants and where F is a

known primitive of f . Via the substitution u = ax+ b (so du = adx, dx = du/a), we get∫
f(ax+ b) dx =

∫
f(u)

a
du

=

∫
1

a

∫
f(u) du

=
1

a
F (u)

=
F (ax+ b)

a
.

215There will clearly be a problem at 0, since g′ is 0 there. So let’s restrict the domain of g a little further,

to positive reals.
216Note that restricting g to positive reals, it has range (1,∞), so that is the domain of g−1, while the range

of g−1 is positive reals. That is why we take the positive square root when computing g−1.
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Notice that we didn’t have to think about the involved expression (f ◦ g−1)/(g′ ◦ g−1) here;

simply by formally re-expressing the whole integrand in terms of the new variable u, we

inevitably reach (f ◦ g−1)(u))/((g′ ◦ g−1)(u) du.

The process of integration by substitution in the general case can be thought of as being

similar to the process of integration by parts, in that it can be used to replace one integration

problem with another, hopefully simpler, one. It can be done entirely mechanically. As stated

earlier in more general terms, a rough guiding principle should be:

identify a “prominent” part of the integrand, call it g(x), and substitute for it by

setting u = g(x) and then completely re-expressing the integrand in terms of u.

This leads to a new integral that, since it makes no reference to g, is hopefully simpler to

evaluate that the original. As the next few examples show, this new, simpler integral may

require the application of some other integration techniques, (maybe another application

of integration by substitution) to crack; or, as we will see in at least one example, the new

integral may be just as hopeless as the old.

Example 1
∫

1/(1 +
√

1 + x) dx. Here an obvious substitution is u =
√

1 + x, which gives

du = dx/(2
√

1 + x) = dx/2u, so dx = 2udu. We get∫
dx

1 +
√

1 + x
=

∫
2udu

1 + u

= 2

∫
udu

1 + u
.

We now do another substitution, w = 1 + u, so dw = du, and u = w − 1, leading to∫
udu

1 + u
=

∫
(w − 1)dw

w

=

∫
dw −

∫
dw

w

= w − log |w|.

Reversing the substitutions,∫
dx

1 +
√

1 + x
= 2

∫
udu

1 + u

= 2(w − log |w|)
= 2 ((1 + u)− log |1 + u|)

= 2
(

1 +
√

1 + x− log
(

1 +
√

1 + x
))

(with the absolute value sign removed in the last log, since 1 +
√

1 + x > 0 always).217

217The substitution u = 1 +
√

1 + x would also have worked here; as would the trick of writing u/(1 + u) =

((u+ 1)− 1)/(u+ 1) = 1− 1/(u+ 1), with obvious antiderivative u− log |1 + u|, instead of using a second

substitution; note that this would have lead to the final answer 2
(√

1 + x− log
(
1 +
√

1 + x
))

, differing from

the answer we got by a constant.
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Example 2
∫
e
√
x dx. An obvious substitution is u =

√
x, with du = dx/2

√
x, so dx =

2
√
xdu = 2udu, leading to∫

e
√
x dx = 2

∫
ueu du

= 2

(
ueu −

∫
eu
)

(integration by parts)

= 2 (ueu − eu)

= 2
(√

xe
√
x − e

√
x
)
.

We could have also tried the substitution w = e
√
x, so dw = ((e

√
x)/2
√
x)dx, or

dx = 2(logw)/w, which leads to∫
e
√
x dx2

∫
logw dw,

and again an application of integration by parts finishes things.

Example 3
∫
ex

2
dx. Here the obvious substitution is u = x2, 218 so du = 2xdx, and

dx = du/(2x) = du/(2
√
u), leading to∫

ex
2

dx =
1

2

∫
eudu√
u
.

The obvious substitution here, w =
√
u, just returns us to

∫
ew

2
dw, and no other

substitution or clever integration by parts helps matters — as mentioned earlier, ex
2

is

a function with no elementary antiderivative.

There is a definite integral version of integration by substitution. With the notation as in

the indefinite version, we have∫ b

a

f(x) dx = (H ◦ g)(x)|bx=a = H(u)|g(b)u=g(a) =

∫ g(b)

g(a)

(f ◦ g−1)(u)

(g′ ◦ g−1)(u)
du.

So, the only change between definite and indefinite integration is that after the substitution

u = g(x), as well as re-expressing the integrand in terms of u, we also re-express the limits of

integration in terms of u; and then there is no need to re-express things in terms of x before

evaluating the integral.

We illustrate with some examples. Consider first
∫ π/2
π/4

cotx dx =
∫ π/2
π/4

cosx dx
sinx

. Set

u = sinx, so du = cosxdx. At x = π/4 we have u = sin(π/4) =
√

2/2, and at x = π/2 we

have u = 1, so ∫ π/2

π/4

cosx dx

sinx
=

∫ 1

√
2/2

du

u
= log 1− log(

√
2/2) = (log 2)/2.

218As with the example of x/(1 + x2), we formally should split the domain of x2 into two invertible parts to

do this example correctly.
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As another simple example, consider
∫ 1

0
xdx

1+x2 = 1
2

∫ 1

0
2xdx
1+x2 . We set219 u = 1 +x2, so du = 2xdx.

At x = 0 we have u = 1, and at x = 1 we have u = 2. So the integral is

1

2

∫ 2

1

du

u
= (log 2)/2.

It’s tempting here to conjecture:

all definite integrals calculated by substitution evaluate to (log 2)/2.

This is false, however.220

13.4 Some special (trigonometric) substitutions

To illustrate how the rough guiding principle of integration by substitution might sometimes

break down, consider
∫ √

1− x2dx. It’s tempting to try the substitution u = x2, so du = 2xdx,

dx = du/2x = 1
2
du√
u
, making the integral

1

2

∫ √
1− u
u

du,

and any obvious substitution gets you right back where you started.

Alternately, one could try the completely non-obvious substitution u = arcsinx (note that

the domain of the integrand is [−1, 1], which is exactly the domain of arcsin), so x = sinu,

1− x2 = cos2 u,
√

1− x2 = cosu (as x ranges over [−1, 1], u ranges over [−π/2, π/2], where

cos is positive), dx = cosu du, and the integral becomes∫
cos2 u du,

a completely different kettle of fish, and possibly amenable to a more direct attack than∫ √
1− x2dx.

There is a general principle here.

Trigonometric substitutions, 1 A function involving a square root of a quadratic expres-

sion can often be reduced to an integral involving trigonometric functions, via the

following substitutions (all motivated by the identity sin2 + cos2 = 1 and its relatives).

Note that throughout we may assume a, b > 0.

• If the integrand involves
√
a2 − b2x2, try the substitution u = arcsin bx

a
, or x =

a
b

sinu. With this substitution,

√
a2 − b2x2 = a

√
1− b2x2/a2 = a

√
1− sin2 u = a

√
cos2 u = a cosu,

219Note that 1 + x2 is invertible on the domain [0, 1].
220This was a joke.
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(so here we are motivated by cos2 u = 1 − sin2 u), while dx = a
b

cosu du. The

domain of
√
a2 − b2x2 is [−a/b, a/b]. For x on this domain, bx/a ranges over

[−1, 1] (the domain of arcsin), so the substitution makes sense. Since arcsin

has range [−π/2, π/2], and on this range cos is positive, we can justify the line

a
√

cos2 u = a cosu above.

• If the integrand involves
√
a2 + b2x2, try the substitution u = arctan bx

a
, or x =

a
b

tanu. With this substitution,
√
a2 + b2x2 = a

√
1 + b2x2/a2 = a

√
1 + tan2 u = a

√
sec2 u = a secu,

(so here we are motivated by sec2 u = 1 + tan2 u), while dx = a
b

sec2 u du. The

domain of
√
a2 + b2x2 is R. For x on this domain, bx/a ranges over R (the domain

of arctan), so the substitution makes sense. Since arctan has range [−π/2, π/2],

and on this range sec is positive, we can justify the line a
√

sec2 u = a secu above.

• If the integrand involves
√
b2x2 − a2, try the substitution221 u = arcsec bx

a
, or

x = a
b

secu. With this substitution,
√
b2x2 − a2 = a

√
b2x2/a2 − 1 = a

√
sec2 u− 1 = a

√
tan2 u = a| tanu|,

(so here we are motivated by tan2 u = sec2 u−1), while dx = a
b

secu tanu du. In the

last two cases we wrote (and justified) a
√

cos2 u = a cosu and a
√

sec2 u = a secu;

here we have to be a little more careful, and really need to write a
√

tan2 u =

a| tanu|. Indeed, the domain of
√
b2x2 − a2 is (−∞,−a/b] ∪ [a/b,∞). If we are

on the negative part of this domain then bx/a ranges over (−∞,−1], which is

the negative part of the domain of arcsec. On this domain, arcsec ranges over

the values (π/2, π], and the tangent function is negative here. If we are on the

positive part of the domain of
√
b2x2 − a2 then bx/a ranges over [1,∞), which is

the positive part of the domain of arcsec. On this domain, arcsec ranges over the

values [0, π/2), and the tangent function is positive here. So we get

√
b2x2 − a2 =

{
−a tanu if x < −a/b,
a tanu if x > a/b.

We’ve already seen the example of
∫ √

1− x2dx transforming into
∫

cos2 u du via the

substitution x = sinu. Here is another example, that involves the arcsec function, and so

requires some care.

Example
∫ √

25x2−4
x

dx. Following the discussion above, the sensible substitution is x =

(2/5) secu, so dx = (2/5) secu tanu du, and
√

25x2 − 4 = 5
√
x2 − (2/5)2 = 5

√
(2/5)2 sec2 u− (2/5)2 = 2

√
sec2 u− 1 = 2

√
tan2 u.

Following the discussion above, we know that we have to treat separately the cases

x ≥ 2/5 and x ≤ −2/5.

221The arcsec function, which somewhat weird, is discussed at the very end of Section 12.4.
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• Case of x ≥ 2/5: Here 2
√

tan2 u = 2 tanu, so

√
25x2 − 4 = 2 tanu,

and the integral becomes

2

∫
tan2 udu.

We’ll discuss trigonometric integrals like this in general in a short while, but this

one can be dealt with fairly easily: using sec2−1 = tan2 we get

2

∫
tan2 udu = 2

∫
(sec2 u− 1)du = 2 (tanu− u) .

We would like to re-express this in terms of x, recalling x = (2/5) secu. One way

is to simply write

2 (tanu− u) = 2

(
tan

(
sec−1

(
5x

2

))
− sec−1

(
5x

2

))
.

This can be considerable cleaned up.

Since x ≥ 2/5 we have 5x/2 ≥ 1, and so sec−1(5x/2) is between 0 and π/2.

Now we use sec2 = 1 + tan2 to get that (5x/2)2 = 1 + tan2(sec−1(5x/2)), so

tan(sec−1(5x/2)) = ±
√

(5x/2)2 − 1 = ±
√

25x2 − 4/2. But which is it, plus or

minus? Well, since sec−1(5x/2) is between 0 and π/2, and tan is positive in that

domain, we must take the positive square root.

As it happens, we can also re-express sec−1(5x/2) in terms of simpler (more

fundamental) trigonometric functions. We have that sec−1 is the inverse of the

composition (r ◦ cos), where r is the reciprocal function x 7→ 1/x. We know222

that (r ◦ cos)−1 = cos−1 ◦r−1 = cos−1 ◦r (because r = r−1). So sec−1(5x/2) =

cos−1(2/5x) (and this calculation does not depend on x ≥ 2/5; it works for all x

in the domain). So we get, in this case,∫ √
25x2 − 4

x
dx =

√
25x2 − 4− 2 cos−1

(
2

5x

)
.

There is another way to do the simplifying calculation, that may be more intuitive.

Recall that in the present case sec−1(5x/2) is between 0 and π/2. Remembering

that in a right-angled triangle with one angle θ, the secant of θ is the length of

the side opposite the angle, divided by the length of the hypothenuse, we are led

to the following right-angled triangle:

222This was a homework problem.
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The angle θ is sec−1(5x/2), which can clearly be expressed in terms of more

fundamental inverse trigonometric functions: for example, it is cos−1(2/5x); and

tan θ is
√

25x2 − 4/2.

An issue with the “right-angled triangle” approach is that it is not so easy to

implement it when the angle one is working with is negative, or greater than π/2;

in this case the earlier method is probably more reliable.

• Case of x ≤ −2/5: Here, following the discussion earlier, 2
√

tan2 u = −2 tanu,

so the integral becomes

−2

∫
tan2 udu = −2

∫
(sec2 u− 1)du

= −2 tanu+ 2u

= −2 tan

(
sec−1

(
5x

2

))
+ 2 sec−1

(
5x

2

)
= −2 tan

(
sec−1

(
5x

2

))
+ 2 cos−1

(
2

5x

)
.

Since x ≤ −2/5 we have 5x/2 ≤ −1, and so sec−1(5x/2) is between π/2 and

π. Now we use sec2 = 1 + tan2 to get that (5x/2)2 = 1 + tan2(sec−1(5x/2)),

so tan(sec−1(5x/2)) = ±
√

(5x/2)2 − 1 = ±
√

25x2 − 4/2. Since sec−1(5x/2) is

between π/2 and π, and tan is negative in that domain, we must take the negative

square root — tan(sec−1(5x/2)) = −
√

25x2 − 4/2 and∫ √
25x2 − 4

x
dx =

√
25x2 − 4 + 2 cos−1

(
2

5x

)
in this case. Note the subtle difference between the two regimes: when x is positive

we subtract 2 cos−1(2/5x), while when x is negative we add that term.223

223If you ask Wolfram Alpha to evaluate the integral in this example, you get the answer∫ √
25x2 − 4

x
dx =

√
25x2 − 4 + 2 tan−1

(
2√

25x2 − 4

)
,

valid for all x with |x| ≥ 2/5. Amusingly, this answer does not differ from our answer by a universal

constant. On [2/5,∞), tan−1(2/
√

25x2 − 4) and − cos−1(2/5x) differ by a constant, while on (−∞, 2/5],

tan−1(2/
√

25x2 − 4) and + cos−1(2/5x) differ by a different constant; see the graph below:
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The above discussion covers all cases where there is a quadratic expression under a square

root, when the quadratic has no linear term.224 But every quadratic with a linear term can

be massaged into a quadratic without a linear term, by a simple linear substitution, a process

known as “completing the square”. This goes as follows: first assuming that p > 0,

px2 + qx+ r =

(
√
px+

q

2
√
p

)2

+ r − q2

4p

= y2 + r − q2

4p
.

If r > q2/4p then the substitution y =
√
px + q/(2

√
p) reduces px2 + qx + r to the form

y2 + a2; if r < q2/4p then it reduces it to the form y2 − a2. If, on the other hand, p < 0, then

px2 + qx+ r = −((−p)x2 − qx) + r

= −
(√
−px− q

2
√
−p

)2

+ r − q2

4p

=

(
r − q2

4p

)
− y2.

If r > q2/4p then the substitution y =
√
−px− q/(2

√
−p) reduces px2 + qx+ r to the form

y2 − a2. If, on the other hand, r < q2/4p, then from the quadratic formula we find that the

(real) range of px2 + qx+ r is empty, and we are in the one case where there is no point to

considering the integration.

Here’s an alternate approach to completing the square, using the quadratic formula:

px2 + qx+ r = p

(
x2 +

q

p
x+

r

p

)

= p

x−
− q

p
+
√

q2

p2 − 4 r
p

2

x−
− q

p
−
√

q2

p2 − 4 r
p

2


= p

((
x+

q

2p

)
− 1

2

√
q2

p2
− 4r

p

)((
x+

q

2p

)
+

1

2

√
q2

p2
− 4r

p

)

= p

(x+
q

2p

)2

−

(
1

2

√
q2

p2
− 4r

p

)2


This is cautionary example that shows that you have to keep your wits about you when dealing with integrals

of functions that are defined on unions of intervals.
224We don’t consider the fourth case,

√
−b2x2 − a2, since this has empty domain.
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If p > 0 we have reduced to one of the the forms a2 + b2x2 or b2x2− a2 (which one depending

on whether (q2/p2)− (4r)(p) is positive or negative). If p < 0 then (q2/p2)− (4r)(p) must be

non-negative (otherwise there are no reals in the range of px2 + qx+ r), and we have reduced

to the form a2 + b2x2.

Example
∫

x√
2x2−4x−7

dx. To make things easier, we pull out a factor of
√

2:∫
x√

2x2 − 4x− 7
dx =

1√
2

∫
x√

x2 − 2x− (7/2)
dx.

We now complete the square:

x2 − 2x− (7/2) = (x− 1)2 − 1− (7/2) = (x− 1)2 − (3/
√

2)2.

We make the substitution u = x− 1, so du = dx, and x = u+ 1, so the integral becomes∫
x√

x2 − 2x− (7/2)
dx =

∫
u+ 1√

u2 − (3/
√

2)2

dx

=

∫
u√

u2 − (3/
√

2)2

dx+

∫
1√

u2 − (3/
√

2)2

dx.

The first of these integrals can be handled by a simple substitution v = u2 − (3/
√

2)2.

For the second, the earlier discussion suggests the substitution u = 3/
√

2 sec v. The

details are left as an exercise.

The examples given above indicate that it is important to understand the integrals of

functions of sin, cos, et cetera, as these pop up naturally in the study functions involving

square roots of quadratics. All functions of trigonometric functions can be re-expressed purely

in terms of sin and cos, so we concentrate our attention only on functions of sin and cos. In

particular, we are going to focus attention on functions of the form cosp sinq, where p and q

are integers; using linearity of the integral, virtually every function of trigonometric functions

that we will need to be able to deal with, can be reduced to this form.

Our examination of this integrals will break into cases, according to the parity (oddness

or evenness) of p, q.

• Case 1: p is odd. Here we write∫
cosp x sinq x dx =

∫
cosp−1 x sinq x cosx dx

=

∫ (
cos2 x

) p−1
2 sinq x cosx dx

=

∫ (
1− sin2 x

) p−1
2 sinq x cosx dx
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(i.e., we “peel off” one copy of cosx, to join the dx; note that we can do this whether p

is positive or negative; note also that since p is odd, (p− 1)/2 is an integer). We now

make the substitution u = sinx, so du = cosxdx, to get∫
cosp x sinq x dx =

∫ (
1− u2

) p−1
2 uq du.

If (p−1)/2 ≥ 0 then expanding out the polynomial (1− u2)
p−1

2 and multiplying through

by uq, we have reduced to integrating a linear combination of functions of the form

uk, k ∈ Z (very easy); if (p− 1)/2 < 0, then at least we have reduced to integrating a

rational function in u, a topic that we will shortly address.

Example:
∫

cos3 x sin4 x dx. We make the substitution u = sinx, du = cosxdx, so∫
cos3 x sin4 x dx =

∫
cos2 x sin4 cosx dx =

∫
(1−sin2)x sin4 cosx dx =

∫
(1−u2)u4 du.

• Case 2: q is odd. This is almost identical to Case 1. Here we “peel off” one copy of

sinx, to join the dx, and make the substitution u = cosx, so du = − sinxdx, and we

reduce to a rational function in u via (sin2 x)(p−1)/2 = (1−cos2 x)(p−1)/2 = (1−u2)(p−1)/2.

Example:
∫

cos2 x
sin5 x

dx. After the substitution u = cosx,∫
cos2 x

sin5 x
dx =

∫
cos2 x

sin6 x
sinx dx = −

∫
u2

(1− u2)3
du.

• Case 3: p, q even, both non-negative, at least one positive225. From

cos2 x+ sin2 x = 1

cos2 x− sin2 x = cos 2x,

we get the identities

cos2 x =
1 + cos 2x

2
, and sin2 x =

1− cos 2x

2

which leads to

cosp x sinq x =

(
1 + cos 2x

2

) p
2
(

1 + cos 2x

2

) q
2

.

Expanding this out, and separating out the monomials in the polynomial, we get a

collection of integrands of the form cosp
′
2x with p′ non-negative, and with p′ smaller

than p. Any such terms with p′ odd can be dealt with by an application of Case 1;

225Things are rather trivial if both p, q = 0...
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any such terms with both p′ even can be dealt with by another application of Case 3.

Because the highest powers involved are strictly decreasing, this process terminates

after a finite number of iterations.

Example:
∫

cos6 x
sin2 x

dx. We write

cos6 x

sin2 x
= (cos2 x)3(sin2 x)

=

(
1 + cos 2x

2

)3(
1− cos 2x

2

)
=

1

16

(
1 + 2 cos 2x− 2 cos3 2x− cos4 2x

)
.

So (ignoring the constants) we’ve reduced to four integrals:

– the 1 is trivial;

– the cos 2x is easy (after the substitution u = 2x, which is the sort of easy

substitution one should just do in one’s head);

– the cos3 2x is an instance of Case 1, and can be dealt with by the substitution

u = sin 2x.

– the cos4 2x is an instance of Case 3, but with smaller powers than the original

instance. We write

cos4 2x =

(
1 + cos 4x

2

)2

=
1

4
(1 + 2 cos 4x+ cos2 4x).

We have three simpler integrals, the first trivial, the second an instance of Case 1,

and the third and even simpler instance of Case 3 (clearly, the last one that will

be encountered in this particular example).

This doesn’t cover every expression of the form cosp x sinq x with p, q ∈ Z; for example, it

omits the case where p, q are both even and non-positive, with at least one of them negative.226

This case, and a whole many more trigonometric integrals, can be dealt with by the following

“magic bullet”.

The last-resort trigonometric substitution Consider the substitution t = tanx/2. We

have

dt =
sec2 x/2

2
dx =

1 + tan2 x/2

2
dx =

1 + t2

2
dx,

so

dx =
2dt

1 + t2
.

226I think that this is the only non-trivial omitted case.
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Also,

sinx = 2 sin(x/2) cos(x/2)

= 2
sin(x/2) cos2(x/2)

cos(x/2)

= 2 tan(x/2) cos2(x/2)

=
2t

sec2(x/2)

=
2t

1 + tan2(x/2)

=
2t

1 + t2
,

with everything valid exactly as long as tan(x/2) is defined. And since cosx =

cos2(x/2)− sin2(x/2) and 1 = cos2(x/2) + sin2(x/2), we have

cosx = 1− 2 sin2(x/2)

= 1− 2
sin2(x/2) cos2(x/2)

cos2(x/2)

= 1− 2 tan2(x/2) cos2(x/2)

= 1− 2t2 cos2(x/2)

= 1− 2

(
t2

sec2(x/2)

)
= 1− 2

(
t2

1 + tan2(x/2)

)
= 1− 2

(
t2

1 + t2

)
=

1− t2

1 + t2
,

again with everything valid exactly as long as tan(x/2) is defined.

The upshot of this is

any integrand in the variable x that is a function of sinx, cosx (and the

other trigonometric functions) (not necessarily a rational function — it could

involve roots, and exponentials, too) can be converted into an integrand in

the variable t that does not mention any trigonometric functions, by the

substitution t = tanx/2 (though this substitution does not do away with

roots or exponentials). In particular, if an integrand is a rational function of

trigonometric functions, it can be converted into a rational function of t by

this substitution.
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This is a “last resort” substitution, because in general if there is any other way to approach

the integration problem, the path is almost always going to be easier that way!227

We give some examples:

Example 1
∫

cos2 x dx. The obvious thing to do here is to write∫
cos2 x dx =

∫ (
1 + cos 2x

2

)
dx =

x

2
+

sin 2x

4
.

Using the “last resort” substitution t = tan(x/2) we get∫
cos2 x dx =

∫ (
1− t2

1 + t2

)2
2

1 + t2
dt

= 2

∫
(1− t2)2

(1 + t2)3
dt.

As we will shortly see, this kind of integral can be handled quite mechanically, but the

result is quite hideous. Mathemaica gives the integral as

2

(
t

(1 + t2)2
− t

2(1 + t2)
+

arctan(t)

2

)
,

so that∫
cos2 x dx = 2

(
tan(x/2)

(1 + (tan(x/2))2)2
− tan(x/2)

2(1 + (tan(x/2))2)
+

arctan(tan(x/2))

2

)
:= f(x).

This obviously equals x/2+(sin 2x)/4 := g(x), right, at least up to an additive constant?

Not exactly ... the Desmos screenshot below shows the two functions:

227Also, there is a slight issue with this method — see example 1, or (exercise) see if you can spot the issue

before looking at example 1.
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Notice that the domain of f is not all reals; it is all reals other than ±π,±3π,±5π, . . ..

On the interval (−π, π), f and g agree; on all other intervals they agree up to a constant.

The issue here is that in making the substitution t = tan(x/2), one has to give up

all values of x of the form ±π,±3π,±5π, . . .; tan(x/2) is not defined for these values.

On all other values, the substitution works fine (modulo dealing with the hideous

expressions that come out of it).

Example 2
∫

dx
1+sinx

. Here, the only course of action seems to be to apply the “last resort”

substitution, and in fact it works beautifully, leading to∫
dx

1 + sin x
= 2

∫
1

(1 + t)2
dt =

−2

1 + t
=

−2

1 + tan(x/2)
.

13.5 Integration by partial fractions

In the last section we saw that many integrals can be reduced to integrals of rational functions,

via appropriate substitutions. There is a method that, in principle at leasts, can find a

primitive of any rational function. The method is, on the whole, fairly okay to understand

at a theoretical level, but (unfortunately) rather difficult to implement practically except in

some simple cases.

Setup

A rational function is a function f given by f(x) = P (x)
Q(x)

where P and Q are both polynomials,

and Q is not zero.

Because our concern is with finding antiderivatives of rational functions, and this is easy

when Q is a constant (in which case the rational function is just a polynomial), we will

throughout assume that the degree of Q is at least 1. Recall that the degree deg(Q) of the

polynomial Q(x) is the highest power of x in the polynomial that has a non-zero coefficient.

Also, since it’s easy to find an antiderivative of the zero function, we will assume that P

is not zero.

By scaling Q by a constant, if necessary, we can assume that

Q(x) = xn + q1x
n−1 + · · ·+ qn−1x+ qn

where n ≥ 1, and that

P (x) = p0x
m + p1x

m−1 + · · ·+ pm−1x+ pm

where m ≥ 0 and p0 6= 0.

Three key facts

To find an antiderivative of P (x)/Q(x) we will need to use three facts from algebra, that we

will not prove.
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Fact 1 (the division algorithm for polynomials): If deg(P ) ≥ deg(Q) then there are poly-

nomials A(x) (the quotient) and B(x) (the remainder) with deg(B) < deg(Q) such that

P (x) = A(x)Q(x) +B(x), or
P (x)

Q(x)
= A(x) +

B(x)

Q(x)
.

A and B can be found by polynomial long division.

Running example: Consider the rational function

3x6 − 7x5 + 9x4 − 9x3 + 7x2 − 4x− 1

x4 − 2x3 + 2x2 − 2x+ 1
.

When we start long division, the first term will definitely be 3x2 (that’s what’s needed to get

the leading x4 in the denominator up to 3x6). Now

(x4 − 2x3 + 2x2 − 2x+ 1)(3x2) = 3x6 − 6x5 + 6x4 − 6x3 + 3x2,

and when this is subtracted from 3x6 − 7x5 + 9x4 − 9x3 + 7x2 − 4x− 1 we get

−x5 + 3x4 − 3x3 + 4x2 − 4x− 1.

So we continue the long division with −x (that’s what’s needed to get the leading x4 in the

denominator up to −x5). Now

(x4 − 2x3 + 2x2 − 2x+ 1)(−x) = −x5 + 2x4 − 2x3 + 2x2 − x,

and when this is subtracted from −x5 + 3x4 − 3x3 + 4x2 − 4x− 1 we get

x4 − x3 + 2x2 − 3x− 1.

So the next term in the long division is 1; and when x4−2x3 + 2x2−2x+ 1 is subtracted from

x4 − x3 + 2x2 − 3x− 1 we get x3 − x− 2. This has degree smaller than 4, so the remainder

term has been reached, and the long division is finished:

3x6 − 7x5 + 9x4 − 9x3 + 7x2 − 4x− 1

x4 − 2x3 + 2x2 − 2x+ 1
= 3x2 − x+ 1 +

x3 − x− 2

x4 − 2x3 + 2x2 − 2x+ 1
.

Examples to work out: Find A and B for the following rational functions.

1. x5

x4+x+1

2. 2x7+3x6−x5+4x4+5x2−1
x4+x2−x

3. (1−x)4

(1+x)4

4. x4+2x3+3x2+2x+1
x2+x+1
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The point of Fact 1 is that since∫
P

Q
=

∫
A+

∫
B

Q
,

and
∫
A is easy to find (A being a polynomial), from here on in the method of partial fractions

we need only concentrate on rational functions of the form B(x)/Q(x), i.e., those where the

degree of the numerator is less than the degree of the denominator.

Fact 2 (a corollary of the fundamental theorem of algebra): The polynomial deg(Q) can be

factored into linear and quadratic terms:

Q(x) = (x− r1)α1 · · · (x− rk)αk(x2 − 2s1x+ t1)β1 · · · (x2 − 2s`x+ t`)
β`

where the ri’s, si’s and ti’s are reals, the αi’s and βi’s are natural numbers, the ri’s are distinct

from each other, the pairs (si, ti) are distinct from each other (so there is no co-incidence

between any pairs of factors), s2
i < ti for each i (so none of the quadratic terms can be

factored further into linear terms), and deg(Q) =
∑

i αi + 2
∑

j βj.

Moreover, each quadratic term x2 − 2six+ ti can be written in the form (x− ai)2 + b2
i

with ai and bi real and bi positive (this comes straight from s2
i < ti: we have x2 − 2six+ ti =

(x− si)2 + ti − s2
i = (x− ai)2 + b2

i where ai = si and bi =
√
ti − s2

i ).

Lurking behind Fact 2 is the fundamental theorem of algebra, which says that every

polynomial with complex coefficients has a root in the complex numbers. Given a complex

polynomial C(z) with root c, using the division algorithm it is possible to write C(z) =

(z− c)C̃(z), where C̃(z) is a complex polynomial whose degree is one less than that of C, and

repeating this process we get that C factors fully into linear terms, as C(z) = (z−c1) · · · (z−cn)

where n = deg(C). Here the ci are complex numbers; but Q, having only real coefficients,

possibly has some of these roots being real (these are the ri above). It turns out that for a

polynomial with all real coefficients, the complex roots appear in what are called complex

conjugate pairs: pairs of the form a+ b
√
−1 and a− b

√
−1. Noting that

(z − (a+ b
√
−1))(z − (a− b

√
−1)) = (z − a)2 + b2,

this “explains” the form of the quadratic factors above.

In general, it is very difficult to fully factor a real polynomial into linear and quadratic

factors.

Running example: Consider x4 − 2x3 + 2x2 − 2x+ 1. After some trial-and error, we find

that 1 must be a root, since (1)4− 2(1)3 + 2(1)2− 2(1) + 1 = 0. So x− 1 is a factor, and long

division gives

x4 − 2x3 + 2x2 − 2x+ 1 = (x− 1)(x3 − x2 + x− 1).

Again 1 is a root of x3 − x2 + x− 1, and

x4 − 2x3 + 2x2 − 2x+ 1 = (x− 1)(x− 1)(x2 + 1).
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The quadratic formula tells us that we cannot factor any further.

Examples to work out: Fully factor the polynomials below into linear factors of the form

x− r and quadratic factors of the form (x− a)2 + b2. Start by trying a few small values of r

(positive and negative) to find one with the polynomial evaluating to 0 at r; then divide by

x− r and repeat.

1. Factorize x4 − x3 − 7x2 + x+ 6

2. Factorize x4 − x3 − 7x2 + x+ 6

3. Factorize x3 − 3x2 + 3x− 1

4. Factorize x6 + 3x4 + 3x2 + 1

5. Factorize x4 + 1 (tricky)

The point of Fact 2 is that it feeds nicely into Fact 3.

Fact 3 (partial fractions decomposition): Let Q and B be polynomials as described above

(Q has degree at least 1, and leading coefficient 1, and B has degree less than that of Q). Let

Q be factored into linear and quadratic terms, exactly as outlined in Fact 2:

Q(x) = (x− r1)α1 · · · (x− rk)αk((x− a1)2 + b2
1)β1 · · · ((x− a`)2 + b2

`)
β` .

Then there are real constants
A11, . . . , A1α1 ,

A21, . . . , A2α2 ,

. . . ,

Ak1, . . . , Akαk ,

B11, . . . , B1β1 ,

B21, . . . , B2β2 ,

. . . ,

Bk1, . . . , Bkβk ,

C11, . . . , C1β1 ,

C21, . . . , C2β2 ,

. . . ,

Ck1, . . . , Ckβk ,
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such that

B(x)

Q(x)
=

A11

(x−r1)
+ A12

(x−r1)2 + · · ·+ A1α1

(x−r1)α1
+

A21

(x−r2)
+ A22

(x−r2)2 + · · ·+ A2α2

(x−r2)α2
+

· · ·+
Ak1

(x−rk)
+ Ak2

(x−rk)2 + · · ·+ Akαk
(x−rk)αk

+
B11x+C11

((x−a1)2+b21)
+ B12x+C12

((x−a1)2+b21)2 + · · ·+ B1β1
x+C1β1

((x−a1)2+b21)β1
+

B21x+C21

((x−a2)2+b22)
+ B22x+C22

((x−a2)2+b22)2 + · · ·+ B2β2
x+C2β2

((x−a2)2+b22)β2
+

· · ·+
B`1x+C`1

((x−a`)2+b2` )
+ B`2x+C`2

((x−a`)2+b2` )
2 + · · ·+ B`β`x+C`β`

((x−a`)2+b2` )
β`
.

The proof of Fact 3 is not very difficult, but it requires too much familiarity with linear

algebra to describe here.

It is somewhat straightforward to locate the values of the constants asserted in Fact 3.

Start with the equation given in Fact 3 (with all the constants unknown). Multiply both

sides by Q(x). The right-hand side becomes a polynomial of degree deg(Q) − 1, so with

deg(Q) coefficients, expressed in terms of a number of unknowns — deg(Q) unknowns, to be

precise. The left-hand side becomes a polynomial with known coefficients with degree at most

deg(Q)− 1. Equating the constant terms on both sides, the linear terms, the quadratic terms,

et cetera, one gets a collection of deg(Q) equations in deg(Q) unknowns. Using techniques

from linear algebra, such a system can be solved relatively quickly to find the (unique, as it

turns out) values for the constants (the A’s, B’s and C’s).

Even without knowing linear algebra, it is fairly straightforward to perform this task, if

the degrees of the polynomials involved are all reasonably small.

Running example: We seek to find the partial fractions decomposition of x3−x−2
(x−1)2(x2+1)

. We

start with
x3 − x− 2

(x− 1)2(x2 + 1)
=

A

x− 1
+

B

(x− 1)2
+
Cx+D

x2 + 1
.

Multiplying through by (x− 1)2(x2 + 1) yields

x3 − x− 2 = A(x− 1)(x2 + 1) +B(x2 + 1) + (Cx+D)(x− 1)2

= (A+ C)x3 + (−A+B − 2C +D)x2 + (A+ C − 2D)x+ (−A+B +D).

Equating coefficients gives

A+ C = 1, − A+B − 2C +D = 0, A+ C − 2D = −1, − A+B +D = −2.

One can solve this system of four equations in four unknowns by, for example, using the first

equation to write A = C − 1, then substituting this into the remaining three to get three

equations in three unknowns, then substitute again to get two equations in two unknowns,

then again to get one equation in one unknown, which is easy to solve. Plugging in that one

known value, the whole system now becomes one of three equations in three unknowns; rinse
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and repeat. (There are systematic ways to do this process, which are very efficient, and are

explored in linear algebra).

Solving this system of equations in this way gives A = 2, B = −1, C = −1 and D = 1, so

that
x3 − x− 2

(x− 1)2(x2 + 1)
=

2

x− 1
− 1

(x− 1)2
− (x− 1)

x2 + 1
.

Examples to work out: Find the partial fractions decompositions of the following expres-

sions.

1. 2x2+7x−1
x3+x2−x−1

2.
∫

2x+1
x3−3x2+3x−1

3.
∫

3x
(x2+x+1)3

4. 1
x4+1

Finding antiderivatives of rational functions

Using the three facts above, we can reduce the task of finding an antiderivative of a rational

function to that of finding antiderivatives of functions of the following types:

• polynomials — these are easy

• functions of the form A
(x−r)α where A and r are constants, and α is a natural number.

These are straightforward:∫
A

(x− r)α
dx =

{
A

(1−α)(x−r)α−1 if α 6= 1

A log(x− r) if α = 1.

• functions of the form Cx+D
((x−a)2+b2)β

where C, D, a and b are real constants, with b positive,

and β is a natural number. To deal with these, we first write

Cx+D

((x− a)2 + b2)β
=

(C/2)2(x− a)

((x− a)2 + b2)β
+

Ca+D

((x− a)2 + b2)β
.

Using the substitution u = (x− a)2 + b2 we get∫
(C/2)2(x− a)

((x− a)2 + b2)β
dx =

C

2

∫
du

uβ
=

{
C/2

(1−β)uβ−1 = C/2
(1−β)((x−a)2+b2)β−1 if β 6= 1

(C/2) log u = (C/2) log((x− a)2 + b2) if β = 1.

To deal with the (Ca+D)/(((x− a)2 + b2)β) terms, we have

Ca+D

((x− a)2 + b2)β
=
Ca+D

b2β

(
1(

x−a
b

)2
+ 1

)
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so using the substitution u = (x− a)/b we get∫
Ca+D

((x− a)2 + b2)β
dx =

Ca+D

b2β−1

∫
du

(u2 + 1)β

In class we studied the integral
∫

du
(u2+1)β

. If we set

Aβ =

∫
du

(u2 + 1)β

then we saw that we have A0 = 1, A1 = arctanu = arctan((x− a)/b), and for β ≥ 1,

Aβ+1 =
u

2β(1 + u2)β
+

(2β − 1)

2β
Aβ =

(x− a)/b

2β(1 + ((x− a)/b)2)β
+

(2β − 1)

2β
Aβ.

So we can recursively figure out an antiderivative.

Running example: We seek an antiderivative of

3x6 − 7x5 + 9x4 − 9x3 + 7x2 − 4x− 1

x4 − 2x3 + 2x2 − 2x+ 1
.

As we have seen, this function can be expressed as

3x2 − x+ 1 +
2

x− 1
− 1

(x− 1)2
− (x− 1)

x2 + 1
.

Only the last of these terms requires effort. We have

x− 1

x2 + 1
=

1

2

2x

x2 + 1
− 1

x2 + 1
,

and so the desired antiderivative of our rational function is

x3 − x2

2
+ x+ 2 log(x− 1) +

1

x− 1
− 1

2
log(x2 + 1) + arctan x.

Examples to work out

1. Find
∫

2x2+7x−1
x3+x2−x−1

dx

2. Find
∫

2x+1
x3−3x2+3x−1

dx

3. Find
∫

3x
(x2+x+1)3dx

4. Find
∫

dx
x4+1

5. Use the t = tan(x/2) substitution, and the method of partial fractions, to find an-

tiderivatives for each of the following trigonometric functions:
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• secx (the answer you get is unlikely to be log(secx+tanx), which is the expression

that you are most likely to see if you look up a table of antiderivatives. Check

that log(secx+ tanx) differentiates to secx, and also that the expression that you

get is equal to log(secx+ tanx), perhaps up to an additive constant).

• sec3 x.

6. Using the “magic” substitution t = tan(x/2), and partial fractions, we see that every

rational function of sin and cos has an elementary antiderivative. Show that also every

rational function of ex has an elementary antiderivative.
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