
14 Taylor polynomials and Taylor’s theorem

14.1 Definition of the Taylor polynomial

Suppose we know a lot about a function f at a point a (the function value, in some exact

form, the value of the derivative, et cetera), but don’t have such easy access to values away

from a. Can we use the information we have at a to say something about the function away

from a?

Examples of this type of situation include:

• f(x) = sinx at 0 (we know everything about the function at 0, in a quite exact way,

but very little about it away from 0)

• f(x) = sin x at π, or −π, or 3π/2, . . ..

• f(x) = log x at 1

• f(x) =
√
x2 + 9 at 4, or 0, or −4.

There’s an obvious, but next-to-useless, way to approximate f near a, using data at a —

just use the constant function f(a). A less obvious, and much more useful, way, is to use the

linearization of f at a to approximate f near a, that is, to use the function

f(a) + f ′(a)(x− a),

which has the property that it agrees with f at a, and also agrees with f ′ at a, so its graph

agrees with the graph of f at a, and is also “traveling in the same direction” as the graph of

f at a.

We can push this further: the function

f(a) + f ′(a)(x− a) +
f ′′(a)

2
(x− a)2

is easily seen to agree with each of f , f ′ and f ′′ at a, and more generally the function

f(a) + f ′(a)(x− a) +
f ′′(a)

2
(x− a)2 + . . .+

f (n)(a)

n!
(x− a)n

is easily seen to agree with each of f, f ′, f ′′, . . . , f (n) at a.228

This example leads to the definition of the Taylor polynomial.

228One way to prove this formally is to prove by induction on k that for n ≥ k ≥ 0, the kth derivative of

f(a) + f ′(a)(x− a) +
f ′′(a)

2
(x− a)2 + . . .+

f (n)(a)

n!
(x− a)n

is
n∑

j=k

(j)k
j!

(x− a)j−k,

where (j)k is defined to be j(j − 1)(j − 2) · · · (j − k + 1) (“j to the power k falling”). Evaluating at x = a

then gives that the kth derivative at a is f (k)(a).
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Taylor polynomial of f at a of order n Suppose f is a function defined at and near a.

The Taylor polynomial of f at a of order n is

Pn,a,f (x) = f(a) + f ′(a)(x− a) +
f ′′(a)

2
(x− a)2 + · · ·+ f (n)(a)

n!
(x− a)n

We give some examples now, the details of which are left as exercises:

• Pn,0,exp(x) = 1 + x+ x2

2!
+ x3

3!
+ . . .+ xn

n!
.

• P2n+1,0,sin(x) = x− x3

3!
+ x5

5!
− x7

7!
+ · · ·+ (−1)n x2n+1

(2n+1)!
.

• P2n,0,cos(x) = 1− x2

2!
+ x4

4!
− x6

6!
+ · · ·+ (−1)n x2n

(2n)!
.

• Pn,1,log(x) = (x− 1)− (x−1)2

2
+ (x−1)3

3
− (x−1)4

4
+ · · ·+ (−1)n (x−1)n

n
.

The Taylor polynomial is not always easy to calculate. For example, consider Pn,0,tan. We

have

• tan 0 = 0,

• tan′ = sec2, so tan′ 0 = 1,

• tan′′ = (sec2)′ = 2 sec2 tan, so tan′′ 0 = 0,

• tan′′′ = (2 sec2 tan)′ = 2 sec4 +4 sec2 tan2, so tan′′′ 0 = 2,

and so P3,0,tan = x+ x3/3, but it does not seem very easy to continue.

14.2 Properties of the Taylor polynomial

An important property of the linearization P1,a,f of a function f at a (formerly denoted Lf,a)

is that not only does P1,a,f (x)− f(x)→ 0 as x→ a, but also

P1,a,f (x)− f(x)

x− a
= f ′(a)− f(x)− f(a)

x− a
→ 0 as x→ a

So the error in using P1,a,f to approximate f not only gets smaller as x gets closer to a, but

gets smaller relative to x−a. But it is not necessarily the case that (P1,a,f (x)−f(x))/((x−a)2)

goes to zero as x approaches a. Consider, for example, the function f(x) = x2 at a = 0, for

which
P1,0,f (x)− f(x)

(x− a)2
= −1 6→ 0 as x→ a.

What about limit as x→ a of

P2,a,f (x)− f(x)

(x− a)2
=
f(a) + f ′(a)(x− a) + f ′′(a)(x− a)2/2− f(x)

(x− a)2
?
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By L’Hôpital’s rule, this limit is same as

lim
x→a

f ′(a) + f ′′(a)(x− a)− f ′(x)

2(x− a)
,

if this limit exists; but

f ′(a) + f ′′(a)(x− a)− f ′(x)

2(x− a)
=

1

2

(
f ′′(a)− f ′(x)− f ′(a)

x− a

)
,

which approaches 0 as x→ a, by the definition of the second derivative at a; so the original

limit is 0. Note that f(x) = x3, a = 0, shows (P2,a,f (x)−f(x))/((x−a)3) does not necessarily

tend to 0.

This example leads to the following definition.

Definition of functions agreeing to order n A function g agrees with a function f to

order n (n ≥ 0 an integer) at a if both g and f are defined near a and if

lim
x→a

g(x)− f(x)

(x− a)n

exists and equals 0.

We use the shorthand g ∼n,a f to denote that g agrees with f to order n at a.

Note that if g ∼n,a f then automatically f ∼n,a g, so it is legitimate to say “f and g agree to

order n at a”. Note also that if f ∼n,a g then f ∼m,a g for all 0 ≤ m < n, since

lim
x→a

g(x)− f(x)

(x− a)m
= lim

x→a
(x− a)n−m

g(x)− f(x)

(x− a)n
= 0,

although it is not necessarily the case that f ∼m,a g for any m > n (as some earlier examples

show). Finally, note that if f ∼n,a g and if g ∼n,a h then it follows that f ∼n,a g. Indeed:

f(x)− h(x)

(x− a)n
=
f(x)− g(x)

(x− a)n
+
g(x)− h(x)

(x− a)n
,

the right-hand side above tends at 0 as x→ a, so the left-hand side does also.

The example that lead to this definition strongly suggests that the Taylor polynomial

Pn,a,f agrees with f to order n. That’s the content of the next theorem.

Theorem 14.1. Suppose f is a function such that each of f, f ′, f ′′, . . . , f (n) exist at a. Then

Pn,a,f ∼n,a f (but is is not necessarily the case that Pn,a,f ∼n+1,a f).

Proof: Consider f(x) = xn+1 at a = 0 to see that we may not have agreement to order n+ 1.

For first part we want to show that

lim
x→a

f(a) + f ′(a)(x− a) + · · ·+ f (n)(a)
n!

(x− a)n − f(x)

(x− a)n
= 0. (?)
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Set

Pn(x) = f(a) + f ′(a)(x− a) + · · ·+ f (n)(a)

n!
(x− a)n − f(x)

and Qn(x) = (x− a)n. It is an easy check that of the following limits exist and equal 0:

• limx→a Pn(x), limx→a P
′
n(x), . . . , limx→a P

(n−2)
n (x) and

• limx→aQn(x), limx→aQ
′
n(x), . . . , limx→aQ

(n−2)
n (x).

So, applying L’Hôpital’s rule n− 1 times, we get that the limit in (?) exists if

lim
x→a

P
(n−1)
n (x)

Q
(n−1)
n (x)

= lim
x→a

f (n−1)(a) + f (n)(a)(x− a)− f (n−1)(x)

n!(x− a)

exists; but

lim
x→a

f (n−1)(a) + f (n)(a)(x− a)− f (n−1)(x)

n!(x− a)
=
f (n)(a)

n!
− 1

n!
lim
x→a

f (n−1)(x)− f (n−1)(a)

(x− a)

which exists and equals 0 by the definition of the nth derivative; so the limit in (?) exists

and equals 0.

So, the Taylor polynomial of f of degree n at a agrees with f to order n at a. Does this

property characterize the Taylor polynomial, among polynomials of degree n? Essentially,

“yes”, as we now see. First we need some notation. Say that Q is a polynomial of degree at

most n in x− a if

Q(x) = a0 + a1(x− a) + a2(x− a)2 + · · ·+ an(x− a)n

(where an is not necessarily non-zero).229

Theorem 14.2. Suppose that f is a function that is n times differentiable at a230, and that

Q is a polynomial of degree at most n in x − a that agrees with f at a to order n. Then

Q = Pn,a,f (so the degree n Taylor polynomial of f at a is the unique polynomial of degree at

most n that agrees with f to order n at a).

229For every polynomial of degree m, and for every real a, the polynomial can be expressed as a polynomial

of degree m in x− a. This is a future-fact — it comes from Linear Algebra. It’s easy to see why it is true,

though. Here’s an example, of expressing an ordinary quadratic polynomial a quadratic polynomial in x) as a

quadratic polynomial in x− 1:

x2 − 4x+ 5 = (x− 1)2 − 2x+ 4 = (x− 1)2 − 2(x− 1) + 2.

The trick is to work from the higher powers down.
230This hypothesis is necessary. It is not true that if f is a function defined at at near a, and if Q is a

polynomial of degree at most n in x− a that agrees with f to order n at a, then Q = Pn,a,f . The issue is that

although Q may agree with f to order n at a, it may not be the case that f has the necessary derivatives

existing to have a Taylor polynomial. (Spivak gives a specific example in his text.)
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This will be a corollary of the following lemma.

Lemma 14.3. If P and Q are polynomials of degree at most n, and P ∼n,a Q, then P = Q.

To see that Theorem 14.2 follows from this, note that

• Q (in the statement of Theorem 14.2) agrees with f to order n at a (by hypothesis of

Theorem 14.2),

• Pn,a,f agrees with f to order n at a (by Theorem 14.1), so

• Q agrees with Pn,a,f to order n at a (as discussed earlier), and so

• Q = Pn,a,f (by Lemma 14.3).

Proof (of Lemma 14.3): Set R = P −Q, so

R(x)

(x− a)n
→ 0 (?)

as x→ a. Write R(x) = r0 + r1(x− a) + · · ·+ rn(x− a)n.

From (?) it follows that
R(x)

(x− a)i
→ 0 (??)

as x→ a, for each i = 0, . . . , n.

We have R(x) → r0 as x → a; but considering (??) at i = 0, we get also R(x) → 0 as

x→ a. So r0 = 0.

From this it follows that R(x)/(x− a)→ r1 as x→ a; but considering (??) at i = 1, we

get R(x)/(x− a)→ 0 as x→ a. So r1 = 0.

Continuing in this many, we get that ri = 0 for all i, and so R = 0 and P = Q.

This theorem suggests an alternate approach to finding Taylor polynomials: if f is n

times differentiable at a, and we can someone guess or intuit a polynomial of degree n around

a that agrees with f to order n at a, then that polynomial must by the Taylor polynomial of

order n at a of f .

Here’s an example. Consider tanh−1 x (recall that tanhx = (ex − e−x)/(ex + e−x)), a

function with domain R and range (−1, 1). We know (or can derive) that

(tanh−1)′(x) =
1

1− x2
,

so

(tanh−1)′′(x) =
2x

(1− x2)2
and (tanh−1)′′′(x) =

6x2 + 2

(1− x2)3
,

so P3,0,tanh−1(x) = x+ x3/3. It does not seem like it will be a very pleasant task to continue

calculating Taylor polynomials via derivatives!
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But we also have

tanh−1 x =

∫ x

0

dt

1− t2

=

∫ x

0

(
1 + t2 + t4 + · · ·+ t2n +

t2n+2

1− t2

)
dt

= x+
x3

3
+
x5

5
+ · · ·+ x2n+1

2n+ 1
+

∫ x

0

t2n+2

1− t2
dx. (?)

If we can show

lim
x→0

1

x2n+1

∫ x

0

t2n+2

1− t2
dx = 0 (??)

then that would exactly say (via (?)) that the polynomial
∑n

k=0 x
2k+1/(2k + 1) agrees with

tanh−1(x) to order 2n+ 1 at 0, and so is the Taylor polynomial P2n+1,0,tanh−1(x).

Using the evenness of the integrand, we have that for |x| < 1/2∣∣∣∣∫ x

0

t2n+2

1− t2
dx

∣∣∣∣ =

∫ |x|
0

t2n+2

1− t2
dx

≤ 4

3

∫ |x|
0

t2n+2dx

=
4|x|2n+3

3(2n+ 3)

and so indeed (??) holds231 and

P2n+1,0,tanh−1(x) = x+
x3

3
+
x5

5
+ · · ·+ x2n+1

2n+ 1
.

We can do a little better than this. Let x ∈ (−1, 1) be fixed (note that (−1, 1) is the

domain of tanh−1). Arguing as above we have∣∣∣∣∫ x

0

t2n+2

1− t2
dx

∣∣∣∣ ≤ |x|2n+3

(2n+ 3)(1− x2)
→ 0 as n→∞.

A corollary of this calculation is that for all x ∈ (−1, 1) we have∣∣tanh−1(x)− P2n+1,0,tanh−1(x)
∣∣ ≤ 4|x|2n+3

3(2n+ 3)
.

So we can estimate tanh−1(x) for any particular x ∈ (−1, 1), to any accuracy, by using

P2n+1,0,tanh−1(x) for large enough n. This hints at the main point of what we are about to do:

if we can estimate the difference between f(x) and Pn,a,f (x) (perhaps just for x in some little

interval around a), then we can have the potential to use the Taylor polynomial as a reliable

way to estimate the function that its the Taylor polynomial of.

231Here’s another approach: applying L’Hôpital’s rule (and the fundamental theorem of calculus) to (??) we

find that the limit exists and equals

lim
x→0

(
1

(2n+ 1)x2n

)(
x2n+2

1− x2

)
= lim

x→0

x2

(2n+ 1)(1− x2)
,

as long as these limits exist. But the last limit evidently exists and equals 0.
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14.3 Taylor’s theorem and remainder terms

Definition of remainder term If f is a function and Pn,a,f exists, then the remainder

term Rn,a,f (x) is defined by

f(x) = Pn,a,f (x) +Rn,a,f (x).

Our goal for the next while is to find good estimates for Rn,a,f (x), that allow us to say that

for x sufficiently close to a, Rn,a,f (x)→ 0 as n→∞ (so the Taylor polynomial at a is a good

approximation for f near a). For example, as we have already discussed, if x ∈ [−1/2, 1/2] is

fixed then

R2n+1,0,tanh−1(x) =

∫ x

0

t2n+2

1− t2
dx ≤ 4|x|2n+3

3(2n+ 3)
→ 0

as n→∞.232

In what follows, we slowly derive Taylor’s Theorem with integral remainder term (Theorem

14.4 below). We won’t both to mention explicitly the assumptions we are making; those will

be stated explicitly in the the theorem, and will easily be seen to be exactly the hypothesis

needed to make the argument we are about to describe work.

Let f be a function, with a and x two fixed points of the domain of f .233 We assume

x 6= a, since it is rather trivial to understand Rn,a,f(a). From the fundamental theorem of

calculus we have

f(x)− f(a) =

∫ x

a

f ′(t) dt or f(x) = f(a) +

∫ x

a

f ′(t) dtor f(x) = P0,a,f (x) +

∫ x

a

f ′(t) dt

which says that R0,a,f (x) can be expressed as
∫ x
a
f ′(t) dt.

Now we apply integration by parts to
∫ x
a
f ′(t) dt, taking

u = f ′(t) so du = f ′′(t) dt

dv = dt so v = t− x.

Notice here that we are not taking v = t, the obvious choice for an antiderivative of 1. We

could, but it would lead us nowhere. Instead we are taking another, non-obvious but equally

correct (because x is just some fixed constant), antiderivative; as we will see in a moment, it

232Note that we have made a subtle change in viewpoint: we are thinking now of x as being fixed (some

number close to a), and thinking about n growing, rather than thinking about n as being fixed with x

approaching a.
233It is critical that a and x are both consider to be fixed here. Think of a as a point at which we know a

lot about f , and of x as some other point, perhaps close to a.
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is this non-obvious choice that drives the proof of Taylor’s theorem. We get

f(x) = f(a) +

∫ x

a

f ′(t) dt

= f(a) + [(t− x)f ′(t)]
x
t=a −

∫ x

a

(t− x)f ′′(t) dt

= f(a) + (x− a)f ′(a) +

∫ x

a

(x− t)f ′′(t) dt

= P1,a,f (x) +

∫ x

a

(x− t)f ′′(t) dt.

This says that R1,a,f (x) can be expressed as
∫ x
a

(x− t)f ′′(t) dt.
Now we apply integration by parts to

∫ x
a

(x− t)f ′′(t) dt, taking

u = f ′′(t) so du = f ′′′(t) dt

dv = (x− t)dt so v =
−(x− t)2

2
.

Notice here that we are taking the obvious choice for antiderivative of 1; as we will in all

subsequent applications in this proof. We get

f(x) = f(a) + (x− a)f ′(t) +

∫ x

a

(x− t)f ′′(t) dt

= f(a) + (x− a)f ′(t) +

[
−(x− t)2

2
f ′′(t)

]x
t=a

+

∫ x

a

(x− t)2

2
f ′′′(t) dt

= f(a) + (x− a)f ′(t) +
(x− a)2f ′′(a)

2
+

∫ x

a

(x− t)2

2
f ′′′(t) dt

= P2,a,f (x) +

∫ x

a

(x− t)2

2
f ′′′(t) dt.

This says that R2,a,f (x) can be expressed as
∫ x
a

(x−t)2

2
f ′′′(t) dt.

We try this one more time. We apply integration by parts to
∫ x
a

(x−t)2

2
f ′′′(t) dt, taking

u = f ′′′(t) so du = f ′′′′(t) dt

dv =
(x− t)2

2
dt so v =

−(x− t)3

3!
.

We get

f(x) = +

∫ x

a

(x− t)2

2
f ′′′(t) dt

= f(a) + (x− a)f ′(t) +
(x− a)2f ′′(a)

2
+

[
−(x− t)3

3!
f ′′′(t)

]x
t=a

+

∫ x

a

(x− t)3

3!
f ′′′(t) dt

= f(a) + (x− a)f ′(t) +
(x− a)2f ′′(a)

2
+

(x− a)3f ′′′(a)

3!
+

∫ x

a

(x− t)3

3!
f ′′′(t) dt

= P3,a,f (x) +

∫ x

a

(x− t)3

3!
f ′′′(t) dt.
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This says that R3,a,f (x) can be expressed as
∫ x
a

(x−t)3

3!
f ′′′′(t) dt.

An obvious pattern is emerging, and we can verify it by induction. Suppose, for some k,

we have shown that

f(x) = Pk,a,f (x) +

∫ x

a

(x− t)k

k!
f (k+1)(t) dt.

We apply integration by parts to
∫ x
a

(x−t)k
k!

f (k+1)(t) dt, taking

u = f (k+1)(t) so du = f (k+2)(t) dt

dv =
(x− t)k

k!
dt so v = −(x− t)k+1

(k + 1)!
.

We get

f(x) = Pk,a,f (x) +

∫ x

a

(x− t)k

k!
f (k+1)(t) dt

= Pk,a,f (x) +

[
−(x− t)k+1

(k + 1)!
f (k+1)(t)

]x
t=a

+

∫ x

a

(x− t)(k+1)

(k + 1)!
f (k+2)(t) dt

= Pk,a,f (x) +
(x− a)k+1

(k + 1)!
f (k+1)(t) +

∫ x

a

(x− t)(k+1)

(k + 1)!
f (k+2)(t) dt

= Pk+1,a,f (x) +

∫ x

a

(x− t)(k+1)

(k + 1)!
f (k+2)(t) dt.

This says that Rk+1,a,f (x) can be expressed as
∫ x
a

(x−t)(k+1)

(k+1)!
f (k+2)(t) dt.

We have proven the following important theorem:

Theorem 14.4. (Taylor’s theorem with integral remainder term) Suppose f, f ′, . . . , f (n+1)

are all defined on an interval that includes a and x, and that f (n+1) is integrable on that

interval. Then

f(x) = Pn,a,f (x) +
1

n!

∫ x

a

(x− t)nf (n+1)(t) dt.

That is,

Rn,a,f (x) =
1

n!

∫ x

a

(x− t)nf (n+1)(t) dt.

There is another form of the remainder term that is usually much easier to work with.

Suppose that f (n+1)(t) is continuous on the closed interval I that has a and x as endpoints234.

Then, by the extreme value theorem, there are numbers m < M such that

m ≤ f (n+1)(t) ≤M

234We write this, rather than the more natural “on the interval [a, x]”, to allow for the possibility that

x < a.
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for t ∈ I, and moreover there are numbers t1, t2 ∈ I with f (n+1)(t1) = m and f (n+1)(t2) = M .

If x > a we have that on I

m(x− t)n ≤ (x− t)nf (n+1)(t) ≤M(x− t)n

so, integrating,
m(x− a)n+1

(n+ 1)!
≤ Rn,a,f (x) ≤ M(x− a)n+1

(n+ 1)!
or

m ≤ (n+ 1)!Rn,a,f (x)

(x− a)n+1
≤M.

By the intermediate value theorem, there is some c between t1 and t2 (and so between a and

x) with

f (n+1)(c) =
(n+ 1)!Rn,a,f (x)

(x− a)n+1

or

Rn,a,f (x) =
f (n+1)(c)(x− a)n+1

(n+ 1)!
.

We can use a similar argument to reach the same conclusion, when x < a. We summarize in

the following theorem, as important as Theorem 14.4.

Theorem 14.5. (Taylor’s theorem with Largrange remainder term, weak form235) Suppose

f, f ′, . . . , f (n+1) are all defined on an interval that includes a and x, and that f (n+1) is

continuous on that interval. Then there is some number c (strictly) between a and x such that

f(x) = Pn,a,f (x) +
f (n+1)(c)(x− a)n+1

(n+ 1)!
.

That is,

Rn,a,f (x) =
f (n+1)(c)(x− a)n+1

(n+ 1)!
.

14.4 Examples

Example 1, sin at 0 We illustrate the use of Theorem 14.5 with the example of the function

f(x) = sin x, at a = 0. Fix x ∈ R. Recall that we have

sinx = x− x3

3!
+
x5

5!
+ (−1)n

x2n+1

(2n+ 1)!
+R2n+1,0,sin(x).

The Lagrange form of the remainder term is

|R2n+1,0,sin(x)| =
∣∣∣∣sin(2n+2)(c)xn+1

(n+ 1)!

∣∣∣∣ ≤ |x|2n+2

(2n+ 2)!
,

235Why is this the weak form? Because this theorem is also true, without the hypothesis that f (n+1) is

continuous. However, since in every example that we will see, we will have continuity of the (n + 1)st

derivative, we will not discuss the stronger form here.
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where c is some number between 0 and x. The inequality above follows from the fact

that | sin(2n+2)(c)| = | sin(c)| ≤ 1, regardless of the values of n and c.

The continue the analysis, we need the following lemma, that will be extremely useful

for many other applications, that says that the factorial function grows faster than any

power function.

Lemma 14.6. For each x > 0 and ε > 0, for all sufficiently large n we have

xn

n!
< ε.

Proof: Pick any integer n0 > 2x. We have that for n > n0,

xn

n!
≤ (n0/2)n

nn−n0
0 (n0 − 1)!

=
nn0

0

(n0 − 1)!

1

2n
.

Noting that (nn0
0 /(n0 − 1)!) is just a constant, we can make 1/(2n) < ε/(nn0

0 /(n0 − 1)!),

so xn/n! < ε, for all sufficiently large n.

Alternately: if n is even, then the largest n/2 terms in the product n! are all bigger

than n/2, so n! > (n/2)n/2 while if n is odd, then the largest (n+ 1)/2 terms in n! are

all bigger than n/2, so n! > (n/2)(n+1)/2. Either way, for all n

n! >
(n

2

)n/2
=

(√
n√
2

)n
,

so
xn

n!
<

(
x
√

2√
n

)n

.

For all n ≥ 8x2 we therefore have

xn

n!
<

(
1

2

)n
.

Since (1/2)n can be made smaller than ε by choosing n sufficiently large, so too can

xn/n!.

An immediate corollary is that for each real x,

R2n+1,0,sin(x)→ 0 as n→∞,

and so for each real x

P2n+1,0,sin(x)→ sinx as n→∞.
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For example, to estimate sin 355 to within ±.001, we simply choose n large enough

that 3552n+2/((2n + 2)!) < .001, and then calculate P2n+1,0,sin(355). A Mathematica

calculation tells us that n = 483 is sufficiently large, and that P2(483)+1,0,sin(355) =

−0.000233397 . . ., so we conclude

sin 355 = −0.000233397 . . .± 0.001.

(In fact sin 355 = −0.0000301444 · · · 236).

Given that sin 355 is so close to zero, it is rather remarkable that the sequence

(P2n+1,0,sin(355))n≥0 starts (355,−7 × 106, 4 × 1010, . . .), and that along the way to

the term P967,0,sin(355), the sequence rises up to as large as 1.6× 10152!

Example 2, cos at 0 By an almost identical argument to the one used for sin, we find that

for all real x,

P2n,0,cos(x)→ cosx as n→∞.

Example 3, exp We have, for each fixed x,

Pn,0,exp(x) = 1 + x+
x2

2!
+ . . .+

xn

n!

with (Lagrange form of the remainder, c between 0 and x)

Rn,0,exp(x) =
exp(c)

(n+ 1)!
xn+1

so that, using the fact that exp is an increasing function.

|Rn,0,exp(x)| ≤ emax{0,x} |x|n+1

(n+ 1)!

From Lemma 14.6 we get that

Rn,0,exp(x) =→ 0 as n→∞

and, as with sin, this is valid for all real x, so the Taylor polynomial of exp at 0 can be

used to estimate expx to arbitrary precision for all x; that is,

Pn,0,exp(x)→ expx as n→∞.

As an illustrative example we estimate e−1. Setting x = −1 we have

|Rn,0,exp(−1)| ≤ 1

(n+ 1)!
.

236Why is this so close to zero? It’s because 355 is almost an integer multiple of pi; in fact, 355 ≈ 113π =

354.9999698556467 . . .. That begs the question, “why is 355/113 such a good approximation to π? That gets

into the theory of continued fractions.
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Since 1/11! = 0.000000025 . . . we get that

P10,0,exp(−1) =
16481

44800
= 0.367879464 . . .

is an approximation of 1/e accurate to ±0.000000025. (In fact 1/e = 0.367879441 . . ..)

Example 4, f(x) = e−1/x2
at 0 Consider the function f defined by

f(x) =

{
e−1/x2

if x 6= 0

0 if x = 0.

We studied this function in some detail, as an example of the application of Lemma

12.6. We proved there that f is differentiable arbitrarily many times at 0, and that all

derivatives at 0 are 0. It follows that

Pn,0,f (x) = 0

for all n (for all x; Pn,0,f is the identically 0 polynomial). It follows that

Rn,0,f (x) = f(x)

for all n and x. So: for x = 0 we have Rn,0,f(x) → 0 as n → ∞ (trivially), but for

x 6= 0 we have

Rn,0,f (x) = e−x
2/2 6→ 0 as n→∞.

In this example, the Taylor polynomial is useless as an approximation tool.

Example 5, tan−1 at 0 Consider tan−1 : R → (−π/2, π/2). Proceeding as we did for

tanh−1, we have

tan−1(x) =

∫ x

0

1

1 + t2
dt

= x− x3

3
+ · · ·+ (−1)nx2n+1

2n+ 1
+

∫ x

0

(−1)n+1t2n+2

1 + t2
dt.

Is P2n+1,0,tan−1(x) =
∑n

k=0
(−1)kx2k+1

2k+1
? Yes, because for all x,∣∣∣∣ 1

x2n+1

∫ x

0

(−1)n+1t2n+2

1 + t2
dt

∣∣∣∣ =
1

|x|2n+1

∫ |x|
0

t2n+2

1 + t2
dt

≤ 1

|x|2n+1

∫ |x|
0

t2n+2 dt

=
x2

2n+ 3

which goes to 0 as x goes to 0, and so the degree 2n + 1 polynomial we have found

agrees with tan−1 to order 2n+ 1 at 0.
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The calculation we have just done shows that

|R2n+1,0,tan−1(x)| ≤ |x|
2n+3

2n+ 3
.

As long as x ∈ [−1, 1], we therefore have R2n+1,0,tan−1(x)→ 0 as n→∞, and so in this

range P2n+1,0,tan−1(x)→ tan−1(x).

What about when |x| > 1? We claim that here, |R2n+1,0,tan−1(x)| 6→ 0. We first consider

positive x. If |R2n+1,0,tan−1(x)| → 0 in this case, then, since∣∣∣∣∫ x

1

(−1)n+1t2n+2

1 + t2
dt

∣∣∣∣ =

∣∣∣∣∫ x

0

(−1)n+1t2n+2

1 + t2
dt−

∫ 1

0

(−1)n+1t2n+2

1 + t2
dt

∣∣∣∣
≤

∣∣∣∣∫ x

0

(−1)n+1t2n+2

1 + t2
dt

∣∣∣∣+

∣∣∣∣∫ 1

0

(−1)n+1t2n+2

1 + t2
dt

∣∣∣∣
and each of

∫ x
0

(−1)n+1t2n+2

1+t2
dt,
∫ 1

0
(−1)n+1t2n+2

1+t2
dt→0 as n→∞, we would have∫ x

1

(−1)n+1t2n+2

1 + t2
dt→ 0.

But now, on the interval [1, x] we have

(−1)n+1t2n+2

1 + t2
≥ 1

1 + x2

so that

either

∫ x

1

(−1)n+1t2n+2

1 + t2
dt ≥ 1

1 + x2
or

∫ x

1

(−1)n+1t2n+2

1 + t2
dt ≤ −1

1 + x2

(depending on whether n is odd or even), and so it cannot possibly be that the integral

tends to 0 as n grows. We conclude that

P2n+1,0,tan−1(x)→ tan−1(x) only on the interval [−1, 1].

The upshot of these examples, is that it seems that for each f and a ∈ Domain(f), there

is a range of x around a for which, for each fixed x in that range, Rn,a,f(x) goes to 0 as n

goes to infinity, and so for which Pn,a,f (x) approaches f(x) as n gets large.

• In the case of sin, cos, exp at 0, that range is all of R.

• In the case of tanh−1 at 0, that range is (−1, 1), which coincides with the domain of

tanh−1.

• In the case of tan−1 at 0, that range is goes from −1 to 1 which again includes only a

portion of the domain.
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• In the case of e−1/x2
at 0, that range includes only the point 0.

That Pn,0,exp(x) approaches ex as n gets large, for all real x, suggests that we can

meaningfully write something like

ex = 1 + x+
x2

2!
+
x3

3!
· · ·

=
∞∑
n=0

xn

n!

for all x ∈ R, and that Pn,0,tan−1(x) approaches tan−1 x as n gets large, for all x ∈ (−1, 1)

suggests that the equation

tan−1(x) = x− x3

3
+
x5

5
− · · ·

is meaningful for all x ∈ [−1, 1].

The goal of rest of these notes is to study infinite sequences and series, to make what we

have just discussed precise.
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