
15 Sequences

15.1 Introduction to sequences

Formally an infinite sequence is a function a : N→ R, Informally, a sequence237 is an ordered

list of real numbers:

(a1, a2, a3, . . .) or (ak)
∞
k=1.

We sometimes even just write (an), if it clear from the context that this is representing a

sequence. Some remarks:

• The number ak (formally, the image of k under the map a), is called the kth term of

the sequence. Notice that we write ak rather than a(k); this is a tradition, but not a

requirement.

• Spivak writes {a1, a2, a3, . . .} or {ak}∞k=1. I much prefer “(· · · )” to “{· · · }”; because

we use “{· · · }” for a set of elements, this notation might incorrectly convey (at a

subconscious level) that the order of the elements in a sequence doesn’t matter.

• A sequence doesn’t necessarily have to start at element a1; it will be useful to allow

sequences of the form (ak, ak+1, ak+2, . . .) (denoted also (aj)
∞
j=k) for arbitrary integers k.

In particular we will very frequently work with sequences of the form (a0, a1, a2, . . .).

We give some examples, mostly to indicate different ways that sequences might be presented:

• a : N→ R, a(k) = 2 + (−1)k.

• an = n2 + 1, n = 0, 1, 2, . . ..

• (2, 3, 5, 7, 11, 13, 17, . . .). (This is a very typical way to present a sequence — list only

a few terms, and let the pattern speak for itself. But it should be used with caution.

Is the pattern really obvious? In this case, I think that the answer is no, since the

sequence I’m thinking of dies not have 19 as its next element.)

• an =
∑n

k=1 x
k/k!. (Notice that this is a family of sequences, one for each x ∈ R.)

• a1 = 1, and, for n ≥ 1, an+1 = 3an+4
2an+3

. (This is a recursive (or recursively defined)

sequence.)

A sequence can be graphically represented: here are some examples:

237From here on we will typically say “sequence” rather than “infinite sequence”.
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As illustrated by the last two examples, a sequence can exhibit very different behaviors as

the terms get larger.

15.2 Convergence

Definition of a sequence converging A sequence (an)∞n=1 converges to a limit L as n

approaches infinity, written

• (an)→ L as n→∞
• an → L as n→∞
• (a1, a2, . . .)→ L as n→∞
• limn→∞ an = L,

if for all ε > 0 there exists n0 such that

n > n0 implies|an − L| < ε.

If a sequence converges to a limit L as n approaches infinity then it is said to be a

convergent sequence. If a sequence does not converge to a limit, then it is said to diverge,

or be a divergent sequence.

Definition of a sequence converging to ∞ A divergent sequence (an)∞n=1 converges to

∞ as n approaches infinity, written
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• (an)→∞ as n→∞

• an →∞ as n→∞

• (a1, a2, . . .)→∞ as n→∞

• limn→∞ an =∞,

if for all N > 0 there exists n0 such that

n > n0 implies an > N.

The definition of a sequence converging to −∞ is analogous.

A note on notation: any way of notating the concept that the function f approaches a

limit near a, it is necessary to include some reference to the parameter a; but when notating

the concept that the sequence (an) converges to a limit as n approaches infinity, it is usually

unnecessary to include reference to the fact that n is approaching infinity; usually it will be

perfectly clear from the context that the only place that n can go is to infinity. So we will

often write simply:

• (an)→∞

• an →∞,

• (a1, a2, . . .)→∞.

We illustrate the concept of convergence with three examples:

•
(
n−1
n+1

)
n≥1

. Evidently this converges to 1 as n→∞. To prove this formally, note that

for each ε > 0 we require an n0 such that n > n0 implies∣∣∣∣n− 1

n+ 1
− 1

∣∣∣∣ < ε.

This is equivalent to ∣∣∣∣(n+ 1)− 2

n+ 1
− 1

∣∣∣∣ < ε

or
2

n+ 1
< ε

or

n >
2

ε
− 1.

So taking n0 = (2/ε)− 1 we get that the sequence converges to 1 as n→∞.

• (n2 + 1)∞n=1. This evidently diverges, and tends to ∞. To verify this formally, we need

to show that for each N , there is n0 such that n > n0 implies n2 + 1 > N . If N ≤ 1,

simply take n0 = 1; if N > 1 take n0 to be anything greater than
√
N − 1.
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• (2 + (−1)k)k≥1. This evidently diverges. To see this formally, suppose that it converges

to a limit L. Whatever L is, it must be at distance at least 1 from at least one of 1, 3.

Suppose it is distance at least 1 from 3. Take ε = 1/2. By the assumption that the

limit is L, there is n0 such that for all n > n0, 2 + (−1)n is within 1/2 of L. This

implies that for all n > n0, 2 + (−1)n cannot take the value 3 (since 3 is not within 1/2

of L, by assumption). But this is a contradiction, since 2 + (−1)n takes the value 3

for all even n. We get a similar contradiction under the assumption that the distance

from L to 1 is at least 1. So the assumption that the sequence converges to a limit

L is untenable, regardless of the choice of L, and (2 + (−1)k)k≥1 diverges. Note that

because 2 + (−1)k always lies between 1 and 3, we easily see that (2 + (−1)k)k≥1 does

not converge to either of ∞,−∞ either.

Just as with limits of functions, it is quite annoying to compute limits of sequences directly

from the definition. Fortunately, just as in the functions case, there are some basic facts

about limits of sequences that allow for relatively straightforward calculation of limits without

employing ε-n0 formalism. These facts mostly mirror those concerning limits of functions.

Theorem 15.1. We have the following facts.

• If a sequence (a′n) is obtained from the sequence (an) by changing finitely many of the

an (where “changing” includes “making undefined”), then the behavior of both sequence

as n→∞ is the same.

• For any natural number k, the sequences (an+k) and (an) have the same limiting behavior

as n→∞.

• If (an) converges to a limit (including possibly ±∞), then that limit is unique.

• If (an)→ La and (bn)→ Lb (La, Lb ∈ R) then

– (can + dbn)→ cLa + dLb for any real constants c, d, and

– (anbn)→ LaLb.

– Moreover, if there is some n0 such that for all n > n0 we have an = bn then

La = Lb.

• If (an) → La and (bn) → ∞ (respectively, −∞) then (an + bn) → ∞ (respectively,

−∞).

• If (an) converges to a limit L 6= 0 then

– there is some n0 such that for all n > n0, an is within L/2 of L (and so in

particular is either always positive or always negative, depending on whether L is

positive or negative), and

– (1/an) converges to 1/L.
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• If (an) converges to ∞ (respectively, −∞), then

– for every positive constant C (respectively, negative constant C) there is some n0

such that for all n > n0, an > C (respectively, an < C) (and so in particular an
is eventually either always positive or always negative, depending on whether the

limit is +∞ or −∞), and

– (1/an) converges to 0.

• (1)→ 1 and (n)→∞.

• If p(n) is polynomial of degree r, with the coefficient nr being cr, and q(n) a polynomial

of degree s, with the coefficient of ns being 1, then

lim
n→∞

p(n)

q(n)
=


cr if r = s

0 if s > r

+∞ if r > s, cr > 0

−∞ if r > s, cr < 0

Proof: We leave all of these as exercises! The proofs here are very similar to the proofs of

similar statements for limits of functions, and this theorem is a good exercise in reviewing

those proofs.

Armed with this theorem we can easily say, for example, that(
2n4 − n+ 1

n3 + 1

)
→∞,

(
2n4 − n+ 1

n4 + 1

)
→ 2 and

(
2n4 − n+ 1

n5 + 1

)
→ 0.

15.3 Sequences and functions

There is a natural (collection of) connections between limits of functions and limits of

sequences. All three of the following facts are left as (easy) exercises:

1. Given a function f : [1,∞)→ R with limx→∞ f(x) = L (or ∞, or −∞), define an by

an = f(n). Then (an)→ ` (or ∞, or −∞).

2. The converse of point 1 above is not true: if (an)→ ` (or∞, or −∞) and f : [1,∞)→ R
satisfies f(n) = an for all n, it is not necessarily the case that limx→∞ f(x) = ` (or ∞,

or −∞).

3. However, point 1 above has a partial converse: if (an) → ` (or ∞, or −∞) and

f : [1,∞)→ R satisfies f(n) = an for all n, and furthermore limx→∞ f(x) exists, then

limx→∞ f(x) = ` (or∞, or −∞). (And note that there is always such an f . For example,

define f : [1,∞)→ R by f(n) = an for all n ∈ N, and then extend f to all of [1,∞) by

linear interpolation (for x ∈ (n, n+ 1), f(x) = (x− n)f(n+ 1) + (n+ 1− x)f(n)).
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For example, consider limn→∞ a
n.

• For a > 0, we have an = en log a.

– For a > 1 we have log a > 0 and so limx→∞ e
x log a = ∞. By point 1 above

limn→∞ a
n =∞.

– For a < 1 we have log a < 0 and so limx→∞ e
x log a = 0. By point 1 above,

limn→∞ a
n = 0.

– Rather trivially, for a = 1 we have limn→∞ a
n = 1.

• For a < 0, we write an = (−1)n(−a)n.

– For a > −1 we have limn→∞(−a)n = 0 (from earlier), and it is an easy exercise

that this implies that limn→∞ a
n = limn→∞(−1)n(−a)n = 0.

– for a ≤ −1 it is an easy exercise to directly verify that limn→∞ a
n does not exist.

In summary

lim
n→∞

an =


∞ if a > 1

1 if a = 1

0 if −1 < a < 1

does not exist if a < −1.

The most important connection between limits of sequences and limits of functions is

conveyed in the following result:

Theorem 15.2. Suppose that f is continuous at c and that (an)→ c. Then limn→∞ f(an) =

f(c)238.

Conversely, suppose f is defined at and near c, and that limn→∞ f(an) = f(c) for all

sequences (an) that tend to c. Then f is continuous at c.

Before proving this, we give some examples.

Example 1 For the first, consider the sequence defined recursively by a1 = 1 and an+1 =

(3an + 4)/(2an + 3). A little computation shows that it is highly plausible that this

sequence converges to the limit
√

2. We are not yet in a position to prove this. But,

suppose we know that (an) converges to some limit, say c. We can use Theorem 15.2 to

prove that the limit must be
√

2. Indeed, consider the function

f(x) =
3x+ 4

2x+ 3
,

238This expression may not make sense — not all the an may be in the domain of f . However, since f is

continuous at c, its domain includes (c−∆, c+ ∆) for some ∆ > 0; and by definition of limit, there is some

n0 such that for all n > n0, an ∈ (c−∆, c+ ∆). So eventually the sequence (f(an))∞n=1 makes sense. And, as

we have seen, this is all that is necessary for the expression limn→∞ f(an) to make sense.
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which is continuous on all its domain (R \ {−3/2}), and in particular is continuous

at c (an ≥ 0 for all n, so c ≥ 0). From (an) → c we conclude (f(an)) → f(c). But

f(an) = an+1, and (an+1)→ c. We conclude that f(c) = c, or

3c+ 4

2c+ 3
= c.

After some easy algebra, we get that the only non-negative solution to this equation is

c =
√

2. We conclude that if (an) converges, then it must converge to
√

2.

Note that the if is important here. Consider the recursively defined sequence a1 = 2

and an+1 = a2
n for n ≥ 1. If the limit exists and equals c (clearly positive), then by the

continuity of f(x) = x2 at c we get by the same argument as above that c = c2 so c = 1.

But the limit is clearly not 1; the sequence diverges.

Example 2 As a second example, consider limn→∞
√
n+ a

√
n−

√
n+ b

√
n. We have√

n+ a
√
n−

√
n+ b

√
n =

√
n+ a

√
n−

√
n+ b

√
n

(√
n+ a

√
n+

√
n+ b

√
n√

n+ a
√
n+

√
n+ b

√
n

)

=
(a− b)

√
n√

n+ a
√
n+

√
n+ b

√
n

=
(a− b)√

1 + a√
n

+
√

1 + b√
n

.

Now the function

f(x) =
a− b√

1 + a
√
x+

√
1 + b

√
x

is continuous at 0, with f(0) = (a − b)/2, so from Theorem 15.2 and the fact that

(1/n)→ 0 we conclude that f(1/n)→ (a− b)/2, and so

lim
n→∞

√
n+ a

√
n−

√
n+ b

√
n =

a− b
2

.

Example 3 Fix a > 0. What is limn→∞ a
1/n? Write a1/n as e(log a)/n. We have (log a)/n→ 0

as n→∞, and the function f(x) = ex is continuous at 0, so by Theorem 15.2 we get

limn→∞ a
1/n = limn→∞ f((log a)/n) = f(0) = 1.

Proof (of Theorem 15.2): First suppose that f is continuous at c and that (an) → c. Fix

ε > 0. There is δ > 0 such that |x− c| < δ implies |f(x)− f(c)| < ε. Also, there is n0 such

that n > n0 implies |an − c| < δ, so |f(an)− f(c)| < ε. Since ε was arbitrary this shows that

(f(an))→ f(c).

For other direction, suppose limn→∞ f(an) = f(c) for all sequences (an) that tend to c,

but that limx→c f(x) 6= f(c). So there is an ε > 0, such that for all δ > 0, there is xδ with
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|xδ − c| < δ but |f(x) − f(c)| ≥ ε. Applying this with δ = 1/n for each n ∈ N, we get a

sequence (xn) with |xn − c| < 1/n but |f(xn)− f(c)| ≥ ε, so (f(xn)) 6→ f(c). But evidently

(xn)→ c, contradicting our hypotheses.

There is a slight modification of this result, that has an almost identical proof:

Suppose f is defined near c (but not necessarily at c) and that limx→c f(x) = `.

If (an)→ c, and for all large enough n we have an 6= c, then limn→∞ f(an) = `.

Conversely if f is defined near (but not necessarily at) c, and limn→∞ f(an) = `

for all sequences (an) that tend to c and that eventually (for all sufficiently large

n) avoid c. Then limx→c f(x) = `.

We will have no need to use this strengthening, so will say no more about it.

One more useful result concerning sequences and convergence is a very natural “squeeze

theorem”.

Theorem 15.3. Let (an), (bn) and (cn) be sequences with (an), (cn)→ L. If eventually (for

all n > n0, for some finite n0) we have an ≤ bn ≤ cn, then (bn)→ L also.

Proof: Fix ε > 0. There is n1, n2 such that n > n1 implies an ∈ (L− ε, L+ ε), and n > n2

implies cn ∈ (L− ε, L+ ε). For n > max{n0, n1, n2} (n0 as in the statement of the theorem),

we have

L− ε < an ≤ bn ≤ cn < L+ ε

so bn ∈ (L− ε, L+ ε).

Consider, for example,

lim
n→∞

(
2n2 − 1

3n2 + n+ 2

) 1
n

.

We have (2n2 − 1)/(3n2 + n+ 2)→ 2/3 as n→∞, so for all sufficiently large n

0.6
1
n ≤

(
2n2 − 1

3n2 + n+ 2

) 1
n

≤ 0.7
1
n .

Since, as we have seen previously, both 0.6
1
n , 0.7

1
n → 1 as n→∞, the squeeze theorem allows

us to conclude

lim
n→∞

(
2n2 − 1

3n2 + n+ 2

) 1
n

= 1.

There is an “infinite” variant of the squeeze theorem, whose simple proof we omit.

If (an)→∞ and (bn) is such that eventually bn ≥ an, then (bn)→∞ also.
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15.4 Monotonicity, subsequences and Bolzano-Weierstrass

Definition of a sequence increasing/decreasing A sequence (an) is said to be increas-

ing (a.k.a. strictly increasing) if an > am whenever n > m. It is said to be weakly

increasing (a.k.a. non-decreasing) if an ≥ am whenever n > m. The analogous definitions

of decreasing (a.k.a. strictly decreasing) and weakly decreasing (a.k.a. non-increasing)

are omitted. The sequence is said to be monotone (a.k.a. strictly monotone) if it is

either increasing or decreasing, and weakly monotone if it is either non-decreasing or

non-increasing.

Definition of a sequence being bounded A sequence (an) is said to be bounded above

if there is M such that an ≤ M for all n, and bounded below if there is m such that

m ≤ an for all n. It is said to be bounded if it is both bounded above and bounded

below.

Note that

• (an) is bounded if and only if there is M such that for all n, |an| ≤M , and

• If there is a number M ′ such that for all n > n0 we have an < M ′, then (an) is bounded,

for example by max{a1, . . . , an,M
′}. So, as with converging to a limit, the property of

being bounded is one that is not compromised by changing a sequence at finitely many

values.

If a sequence (an) is bounded above, then {an : n ∈ N} is non-empty and bounded above,

so α = sup{an : n ∈ N} exists. It is certainly not necessarily the case, though, that (an)

converges under these circumstances, nor the limit, if it exists, has to be α. If, however, the

sequence is also non-decreasing, the story is different.

Lemma 15.4. If (an) is non-decreasing and bounded above then (an)→ α := sup{an : n ∈
N}.

Proof: Let ε > 0 be given. There is some n0 with an0 ∈ (α− ε, α] (otherwise, α− ε would

be an upper bound for (an), contradicting that α is the least upper bound. Since (an) is

non-decreasing we have that an ∈ (α− ε, α] for all n > n0, so |an − α| < ε for all such n.

The analogous result, that a non-increasing sequence that is bounded below tends to a

limit, and that that limit is inf{an : n ∈ N}, is proven almost identically.

As an example, consider the recursively defined sequence a1 = 1, an+1 = (3an+4)/(2an+3)

for n ≥ 1. We showed previously that if this sequence converges to a limit, that limit must

be
√

2. We now show that it does converge to a limit, by showing that it is non-decreasing

and bounded above.
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We first note that obviously an > 0 for all n. We have

an+1 ≥ an if and only if
3an + 4

2an + 3
≥ an

if and only if 4 ≥ 2a2
n

if and only if an ≤
√

2.

We now show by induction on n that an ≤
√

2 for all n; as well as this showing that (an) is

non-decreasing, it also shows that (an) is bounded above, so by the lemma converges.

The base case of the induction is trivial. For the induction step, we assume an ≤
√

2 for

some n ≥ 1. We have

an+1 ≤
√

2 if and only if
3an + 4

2an + 3
≤
√

2

if and only if 3an + 4 ≤
√

2(2an + 3)

if and only if 9a2
n + 24an + 16 ≤ 8a2

n + 24an + 18

if and only if an ≤
√

2.

This completes the induction, and the verification that (an)→
√

2. Notice that (a1, a2, a3, . . .)

is a list of every-better rational approximations to
√

2.

In general, determining whether a sequence is bounded above or not is not easy! Consider,

for example:

• (an) where an = 1 + 1/2 + 1/3 + · · ·+ 1/n,

• (bn) where bn =
∑

p≤n, p a prime number 1/p, and

• (cn) where cn =
∑

k≤n, k has no 7 in its decimal representation 1/k.

We will shortly develop techniques to a test sequences of this form — sequences who generic

terms are sums of other sequences — for boundedness.

We now turn to considering subsequences. Informally, a subsequence of a sequence

(a1, a2, a3, . . .)

is a sequence of the form

(an1 , an2 , an3 , . . .)

with n1 < n2 < n3 · · · . In other words, it is a sequence obtained from another sequence by

extracting an infinite subset of the elements of the original sequence, keeping the elements in

the same order as they were in the original sequence.

Formally, a subsequence is a restriction of a sequence a : N→ R to an infinite subset S of

N, that is, a function a|S : S → N defined by a|S(n) = a(n) for n ∈ S.

Here is the fundamental lemma concerning subsequences of a sequence.
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Lemma 15.5. Every sequence has a subsequence which is either non-decreasing or non-

increasing. In fact, every sequence has a subsequence which is either weakly increasing or

strictly decreasing. Also, every sequence has a subsequence which is either strictly increasing

or weakly decreasing.

Proof: Call a term an in a sequence a horizon point if an > am for all m > n. If a sequence has

infinitely many horizon points, say an1 , an2 , . . ., then we get a strictly decreasing subsequence.

If there are only finitely many horizon points, then pick an1 after the last horizon point. Since

an1 is not a horizon point, there is n2 > n1 with an2 ≥ an1 . Since an2 is not a horizon point,

there is n3 > n2 with an3 ≥ an2 . Repeating, we get a weakly increasing subsequence.

This shows that every sequence has a subsequence which is either weakly increasing or

strictly decreasing. Applying this result to the sequence (−an) shows that (an) also has a

subsequence which is either strictly increasing or weakly decreasing.

Combining Lemmas 15.4 and 15.5 we get the following, one of the cornerstone theorems

of analysis.

Theorem 15.6. (Bolzano-Weierstrass) If (an) is bounded then it has a convergent subse-

quence.

Here is a consequence of the Bolzano-Weierstrass theorem. Suppose (an) is a bounded

sequence, bounded, say, by M (so −M ≤ an ≤M for all n). Let S be the set of all numbers

s such that (an) has a subsequence which converges to s. We have that S is non-empty (by

Bolzano-Weierstrass). Also, by the squeeze theorem every element in S lies between −M and

M . So S is bounded, both from above and from below. By the completeness axiom, then, S

has both a supremum and an infimum.

Defintion of lim sup and lim inf With the notation as above, the limit superior of the

sequence (an), or lim sup, denoted lim sup an, is the supremum of S, and the limit

inferior, or lim inf, denoted lim inf an, is the infimum of S.

Think of lim sup an as the “largest” of all subsequential limits of (an), and lim inf an as

the “smallest” of all subsequential limits. The quotes around “largest” and “smallest” are

there since, as usual when working with infima and suprema, there may not actually be

subsequences that converge to the lim sup or lim inf. But in fact they are unnecessary in this

case.

Lemma 15.7. Suppose that (an) is a bounded sequence, with lim sup an = α and lim inf an =

β. Then (an) has a subsequence that converges to α, and one that converges to β.

Proof: We’ll just show that there is a sequence that converges to α; the proof of the existence

of a sequence converging to β is similar.

If α ∈ S, we are immediately done. If not, for each n ∈ N there is αn ∈ S with

α− 1/n < αn < α (since α = supS), and there is a subsequence that converges to αn.
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Build a new subsequence as follows: chose an1 to be any term of the subsequence converging

to α1, that is distance less than 1 from α1; chose an2 to be any term of the subsequence

converging to α2, that is distance less than 1/2 from α2; and in general chose ank to be any

term of the subsequence converging to αk, that is distance less than 1/k from αk.

Notice that an1 is distance less than 1+1 = 2 from α; an1 is distance less than 1/2+1/2 = 1

from α; and in general ank is distance less than 1/k + 1/k = 2/k from α. Since 2/k → 0 as

n→∞, it follows that for any ε > 0 the terms of the sequence (an1 , an2 , . . .) eventually are

all within ε of α.

So:

The lim sup of a bounded sequence is the largest subsequential limit, and the lim

inf is the smallest subsequential limit.

A bounded sequence may not have a limit, but it always has a lim inf and a lim sup, and

it is for this reason that these parameters are introduced. As an example, the sequence whose

nth term an is 0 if n is odd, and 1− (1/n) if n is even, has no limit, but it has lim inf an = 0

and lim sup an = 1.

The notions of lim sup and lim inf can be thought of as generalizations of the notion of

the limit of a sequence, because if a sequence (an) has a limit, then it is fairly easy to prove

(exercise!) that lim an = lim sup an = lim inf an (and conversely, if (an) is a sequence with

lim sup an = lim inf an then the sequence converges to the common value).

lim sup and lim inf can also be thought of as capturing the “eventual” behavior of a

sequence. Suppose (an) is a sequence with lim sup an = α. For each ε > 0, it must be the

case that only finitely many terms of the sequence are larger than α + ε (if not, there would

be a subsequence consisting only of terms larger than α + ε, and by the Bolzano-Weierstrass

theorem this subsequence would have a subsequence converging to a limit that lies at or

above α+ ε, contradicting that α is the lim sup). On the other hand, for each ε > 0, it must

be the case that infinitely many terms of the sequence are larger than α− ε (by definition of

α there must be a subsequence converging to some value between α− ε/2 and α, and that

subsequence eventually always has terms greater than α − ε). This leads to an alternate

characterization of lim sup and lim inf (we skip the nitty gritty details of verifying this):

If (an) is a bounded sequence, then lim sup an is the unique real number α such

that for each ε > 0 only finitely many terms of the sequence are larger than α+ ε,

while infinitely many terms of the sequence are larger than α− ε. Also lim inf an
is the unique real number β such that for each ε > 0 only finitely many terms of

the sequence are smaller than β − ε, while infinitely many terms of the sequence

are smaller than β + ε.

There are other characterizations of lim sup and lim inf, and extensions to unbounded

sequences, which we do not address.

We end our discussion of convergence of sequences by introducing one last test for

convergence.
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Definition of a Cauchy sequence A sequence (an) is Cauchy, or a Cauchy sequence, if

for all ε > 0 there is n0 such that n,m > n0 implies |an − am| < ε.

In other words, a sequence is Cauchy not necessarily if the terms eventually get close to a

particular limit, but if they eventually get close to one another.

For example, every sequence (an) that converges to a limit, is Cauchy. Indeed, suppose

that the limit is L. Fix ε > 0. There is n0 such that n,m > n0 implies both |an − L| < ε/2

and |am − L| = L− am| < ε/2. But then,

|an − am| = |an − L+ L− am| ≤ |an − L|+ |L− am| < ε/2 + ε/2 = ε.

In fact, convergent sequences are the only Cauchy sequences:

Lemma 15.8. If (an) is a Cauchy sequence, then (an) converges.

Proof: Let (an) be a Cauchy sequence. The proof that (an) converges goes in three steps.

• (an) is bounded: There is n0 such that n,m > n0 implies |an− am| < 1. In particular,

for every m > n0, |an0+1 − am| < 1, so am ∈ (an0+1 − 1, an0+1 + 1). So (an) is bounded

above by max{a1, . . . , an0 , an0+1 + 1}, and below by min{a1, . . . , an0 , an0+1 − 1}.

• (an) has a convergent subsequence: Directly from the Bolzano-Weierstrass theorem,

there is a subsequence of (an), (an1 , an2 , . . .) say, that converges to a limit, L say.

• (an) converges to L: Suppose not. Then there is ε > 0 for which it is not the case

that eventually all terms of the sequence are within ε of L. In other words, there is a

subsequence (an′1 , an′2 , . . .) with |an′k −L| ≥ ε. Now pick any n0. There is n′k > n0; there

is also nk > n0 such that |ank − L| < ε/10. It follows that |ank − an′k | > ε/2,239 and so

it is not possible to find an n0 such that for all n,m > n0, we have |an − am| < ε/2.

This contradicts that (an) is Cauchy.

Showing that a sequence is Cauchy allows us to show that it is convergent, without

239Draw a picture!
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actually finding the limit. Consider, for example, an =
∑n

k=1 1/k2. We have, for n > m,

|an − am| =
1

(m+ 1)2
+

1

(m+ 2)2
+ · · ·+ 1

n2

≤ 1

(m+ 1)2 − (m+ 1)
+

1

(m+ 2)2 − (m+ 2)
+ · · ·+ 1

n2 − n

=

(
1

m
− 1

m+ 1

)
+

(
1

m+ 1
− 1

m+ 2

)
+ · · ·+

(
1

n− 1
− 1

n

)
=

1

m
− 1

n

≤ 1

m

<
1

n0

.

So, given ε > 0, if we choose n0 such that 1/n0 ≤ ε, then for all n,m > n0 we have

|an − am| < ε, showing that (an) is Cauchy, and so converges to a limit.

Notice that we were able here to establish that (an) converges, without actually identifying

the limit. This illustrates the value of the concept of Cauchy sequences.240

240The problem of evaluating the limit of (an) in this case is known as the Basel problem, and was famously

solved by Euler, who showed the remarkable formula

∞∑
n=1

1

n2
=
π2

6
.

See e.g. https://en.wikipedia.org/wiki/Basel_problem.
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