
16 Series

16.1 Introduction to series

Informally a series or infinite series is an expression of the form

a1 + a2 + a3 + . . .

or
∞∑
k=1

ak.

We clearly have to take care with such an expression, as it is far from clear that the operation

of adding infinitely many things is well defined. For example, we could argue

∞∑
k=1

(−1)k = 0

by writing

∞∑
k=1

(−1)k = (−1 + 1) + (−1 + 1) + (−1 + 1) + · · ·

= 0 + 0 + 0 + · · ·
= 0;

but we could equally well argue
∞∑
k=1

(−1)k = −1

by writing

∞∑
k=1

(−1)k = −1 + (1− 1) + (1− 1) + · · ·

= −1 + 0 + 0 + · · ·
= −1.

We will see more startling paradoxes later.

Formally, given a sequence (an), define the nth partial sum of (an) by

sn = a1 + . . .+ an =
n∑
k=1

ak

Definition of summability Say that (an) is summable if (sn) converges to some limit `.
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If (an) is summable we write
∑∞

k=1 ak or a1 + a2 + . . . for `. Informally, we say “the series∑∞
k=1 ak converges (to `)”241, or

∞∑
k=1

ak = `.

We give some examples here:

• if (an) is eventually (for all sufficiently large n) 0, then it is summable.

• ((−1)n) is not summable: the sequence of partial sums is

(−1, 0,−1, 0,−1, 0 . . .),

which does not converge to a limit.

• (1/n) is not summable. The nth partial sum sn is

sn = 1 +
1

2
+

1

3
+ · · ·+ 1

n
.

There are many ways to see that the sequence (sn) does not tend to a limit. Perhaps

the simplest is to consider the subsequence (s2n). We have

s2n = 1 +
1

2
+

(
1

3
+

1

4

)
+

(
1

5
+ · · ·+ 1

8

)
+ · · ·+

(
1

2n−1 + 1
+

1

2n

)
> 1 +

1

2
+

(
1

4
+

1

4

)
+

(
1

8
+ · · ·+ 1

8

)
+ · · ·+

(
1

2n
+

1

2n

)
= 1 +

1

2
+

1

2
+

1

2
+ · · ·+ 1

2

= 1 +
n

2
.

Since 1 + n/2 can be made arbitrarily large by choosing n large enough, we see that

(sn) cannot possibly tend to a finite limit.242

• Consider the sequence (rn)∞n=0 with |r| < 1. We have

sn = 1 + r + r2 + · · ·+ rn =
1− rn+1

1− r
=

1

1− r
− rn+1

1− r
For |r| < 1, limn→∞ r

n+1 = 0, so (sn)→ 1/(1− r) as n→∞. We conclude that

for |r| < 1, (rn)∞n=0 is summable, and

∞∑
n=0

rn =
1

1− r
.

This is the incredibly useful geometric series sum.
241Note that this is quite informal; the expression “

∑∞
k=1 ak” is just a single expression, that is not varying,

so is not really in any sense converging to anything
242The partial sum sn = 1 + 1

2 + · · · + 1
n is called the nth Harmonic number, usually denoted Hn. It’s

properties will be explored in a homework problem.
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16.2 Tests for summability

We now develop a collection of tests/criteria for summability.

Basic closure properties If (an), (bn) are both summable, then so are

• (an + bn) — with
∞∑
n=1

(an + bn) =
∞∑
n=1

an +
∞∑
n=1

bn

• and (can) — with
∞∑
n=1

can = c

∞∑
n=1

an.

The proofs of these facts are left as exercises.

For all k ≥ 0, the sequences (a1, a2, a3, . . .) and (ak, ak+1, ak+2, . . .) are either both

summable or both not, and if they are both summable, then they have the same sum;

from this it follows that if two sequences can be made equal by shifting and changing

finitely many terms, then they are either both summable or both not. Again, the proof

is left as an exercise.

Cauchy criterion (an) is summable if and only if (sn) is Cauchy. This follows from Lemma

15.8, and from the observation before that lemma that convergent sequences are Cauchy.

This means that (an) is summable if and only if for all ε > 0 there’s n0 such that

n,m > n0 implies |sm − sn| < ε, that is (assuming without loss of generality that

m > n)

|an+1 + an+2 + . . .+ am| < ε.

The intuition here is that a sum
∑∞

n=1 an converges if and only if its “tail” an + an+1 +

an+2 + · · · can be made arbitrarily small. But this is just an intuition; the tail of an

infinite sum is itself a sum of infinitely many things, and so to properly understand

it we need the theory that we are in the process of developing. The Cauchy criterion

expresses the idea that the tail of the sequence can be made arbitrarily small, while

only ever referring to the sum of finitely many terms.

Vanishing condition If (an) is summable then, from the Cauchy condition, for all ε > 0

there is n0 such that n,m > n0 implies |sn − sm| < ε. Applying this with m = n− 1

we get that for sufficiently large n, |an| < ε. It follows that limn→∞ |an| = 0, so

limn→∞ an = 0. The contrapositive of this is what is usually used:

if limn→∞ an 6= 0 then (an) is not summable.

For example, for |r| ≥ 1 we have limn→∞ r
n 6= 0, so in this range (rn) not summable

(we have already seem that it is summable, with sum 1/(1− r) for all other r).
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Note: the converse of vanishing condition is not true — (an)→ 0 does not imply that

(an) is summable. An example to consider is (1/n).

Boundedness criterion This is more a theoretical than a practical criterion. If an ≥ 0 for

all n, then (sn) is increasing. So in this situation

(an) is summable iff (sn) is bounded above.

As an example, we earlier showed that
(∑n

k=1
1
k2

)
is bounded above, and so now we

know that (1/n2) is summable, i.e., that the expression
∑∞

n=1
1
n2 makes sense (is finite).

Comparison test Suppose bn ≥ an ≥ 0 for all n. If (bn) is summable, then so is (an) —

this is because the partial sums of (an) are bounded above by
∑∞

n=1 bn, so we can apply

the boundedness criterion. Contrapositively, if (an) is not summable, then neither is

(bn).

We give some examples.

• (1/nα), α < 1. We have nα < n, so 1/nα > 1/n ≥ 0. By comparison with (1/n),

(1/nα) is not summable.

• (n3/3n). We know that (1/3n) is summable, so we would like to say that (n
3

3n
) is

too, by comparison. But the inequality goes the wrong way — we have 1/3n ≤ n3

3n
.

We can, however, compare with (1/2n). We have n3/3n ≤ 1/2n for all large enough

n, so by comparison (n
3

3n
) is summable.243

• (n2/(n3 + 1)). This looks a lot like 1/n, so we suspect that it is not summable.

But it is not true that n2/(n3 + 1) > 1/n. However, for all large enough n, we

have n2/(n3 + 1) > 1/2n (actually for n > 1), so (n2/(n3 + 1)) is not summable,

by comparison with (1/2n).

Limit comparison test As the last few examples show, sometimes the comparison test can

be awkward to apply. A much more convenient version is the limit comparison test:

Suppose an, bn > 0 and limn→∞ an/bn = c > 0. Then (an) is summable if and

only if (bn) is.

To prove this, first suppose that (bn) is summable. There is n0 such that n > n0 implies

an < 2cbn. Since (bn) is summable, so is (2cbn). We can now conclude that (an) is

summable, by comparison with (2cbn). (As usual, we are ignoring finitely many terms

of (an) that might be larger than their companion terms in (2cbn)).

In the other direction, if (an) is summable, then since bn/an → 1/c > 0 we get that (bn)

is summable by the above argument.

We give a few examples:

243We don’t care what happens for finitely many n; that changes the sum, but not whether the sequence is

summable.

382



• (n2/(n3 + 1)). We have

lim
n→∞

n2/(n3 + 1)

1/n
= 1,

so by limit comparison with (1/n), we get that (n2/(n3 + 1)) is not summable

(and note that this went more smoothly than the comparison test).

• (2/ 3
√
n2 + 1). Since 1/n2/3 diverges, and

lim
n→∞

2/ 3
√
n2 + 1

1/n2/3
= 2,

we get that (2/ 3
√
n2 + 1) is not summable.

Ratio test This is possibly the most useful criterion for summability. If an > 0 for all

(sufficiently large) n, and

lim
n→∞

an+1

an
= r,

then:

• if r < 1, the series
∑∞

n=1 an converges (that is, (an) is summable),

• if r > 1, the series does not converge, and

• if r = 1, no conclusion can be reached.

Before proving this, we give some examples.

• If an = x2n/(2n)! (positive for all n and all x ∈ R), then limn→∞ an = 0, and so∑
n≥0

x2n

(2n)!

converges to a limit for all real x. By the same argument, so does∑
n≥0

xn

n!
.

We should strongly suspect that the sum is ex (and in fact we can easily prove

this at this point); we will return to this later. Notice that from the summability

of (xn/n!) and the vanishing criterion, we recover a previous result, that

lim
n→∞

xn

n!
= 0

for all real x.
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• an = nk/cn, c > 1, k > 0. We apply the ratio test, and see that

lim
n→∞

an+1

an
= lim

n→∞

(n+ 1)k

cnk
=

1

c
< 1

and so (nk/cn) summable, that is,

∞∑
n=0

nk

cn

is a finite number. Note that this tells us (via the vanishing criterion) that

limn→∞ n
k/cn = 0 (something we have seen before).

We now turn to the proof of ratio test. Suppose r < 1. Fix s with r < s < 1. There is

n0 such that an+1/an < s for all n > n0. We have

an+1 < san,

an+2 < san+1 < s2an,

and in general

an+k < skan,

so applying at n = n0 + 1 we get

a(n0+1)+k < skan0+1

for all k ≥ 1. Since (skan0+1)∞k=1 is summable (it is a geometric series), so is (a(n0+1)+k)
∞
k=1

(by comparison), and so so also is (an)n≥1.

On the other hand, suppose r > 1. Fix s with 1 < s < r. There n0 such that for all

n > n0, an+1/an > s so that (by the same reasoning as above) a(n0+1)+k > skan0+1, so

limn→0 an 6= 0 and so (an) not summable.

Finally, the sequences (1/n) (which is not summable) and (1/n2) (which is) both have

lim
n→∞

an+1

an
= 1,

which verifies that no conclusion can be reached if r = 1.

Integral test Suppose that f : [1,∞) → (0,∞) is non-increasing, and f(n) = an. Then

(an) is summable if and only if
∫∞

1
f exists.

As an example, consider the p-series
∑∞

n=1 1/np.

• If p ≤ 0, the sum diverges, by the vanishing criterion.

• p > 0, the sum converges if and only if
∫∞

1
dx/xp exists, which is the case exactly

if p > 1.
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At p = 1 we recover the divergence of the Harmonic series

1 +
1

2
+

1

3
+ · · · .

At p = 2 we get that
∑∞

n=1
1
n2 is some finite number (as we have seen before, via ad-hoc

methods); that number happens to be π2/6.

Here is a proof of the integral test. Consider the sequence whose nth term is
∫ n+1

n
f .

We have that
∫∞

1
f exists if and only if (

∫ n+1

n
f)n≥1 is summable.

Because f is decreasing we have

an+1 ≤
∫ n+1

n

f ≤ an.

Suppose (
∫ n+1

n
f)n≥1 is summable. Then the first inequality, together with comparison,

says that (an+1) is summable, and so (an) is summable.

Suppose on the other hand that (an) is summable. Then the second inequality, together

with comparison, says that (
∫ n+1

n
f)n≥1 is summable.

Leibniz’ theorem on alternating series Most of the powerful tests for summability pre-

sented so far have concerned non-negative sequence. We now present a test which

considers sequences that have some negative terms. Suppose (an) is non-increasing and

tends to 0 (and so necessarily an ≥ 0 for all n). Then Leibniz’ theorem is the assertion

that the alternating series ((−1)n−1an) is summable, i.e.,

a1 − a2 + a3 − a4 · · ·

converges to a (finite) limit.

For example, (1/n) is not summable, but ((−1)n/n) is; and if pn is the nth prime, then

(1/pn) not summable, but ((−1)n/pn) is.

To prove Leibniz’ theorem, it helps to draw a picture of the sequence of partial sums,

which strongly suggests that s1 ≥ s3 ≥ · · · ≥ ` and s2 ≤ s4 ≤ s6 · · · ≤ L, for some limit

L, and with every odd partial sum exceeding every even one:
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Inspired by this picture, we prove Leibniz’ theorem in small steps:

• First, s1 ≥ s3 ≥ s5 ≥ · · · (odd partial sums form a non-increasing sequence).

Indeed, for n ≥ 1 we have

s2n−1 − s2n+1 = a2n − a2n+1 ≥ 0

since (an) is non-increasing.

• Next, s2 ≤ s4 ≤ s6 ≤ · · · (even partial sums form a non-decreasing sequence).

Indeed, for n ≥ 2 we have

s2n − s2n−2 = a2n−1 − a2n ≥ 0

again since (an) is non-increasing.

• Next, if k is even and ` is odd, then sk ≤ s` (all odd partial sums are at least as

large as all even partial sums). Indeed, for every n we have s2n−1 − s2n = an ≥ 0,

so s2n ≤ s2n−1. So, choosing n large enough that 2n > k and 2n− 1 > `, we have

from the first two observations that

sk ≤ s2n ≤ s2n−1 ≤ s`.

• Next, the sequence (s2n)∞n=1 converges to a limit, say α. Indeed, it is non-decreasing

and bounded above, say by s1, by previous observations, so converges.

• Next, the sequence (s2n−1)
∞
n=1 converges to a limit, say β. Indeed, it is non-

increasing and bounded below, say by s2, by previous observations, so converges.

• Next, α = β. Indeed, as previously observed we have s2n−1 − s2n = an. Taking

limits of both sides as n goes to infinity, and using the last unused hypothesis

(that (an)→ 0) we get β − α = 0 so α = β.

• Finally, letting L be the common value of α, β, we have (sn) → L. Indeed, fix

ε > 0. Because (s2n) increases to limit L there is n1 such that if n > n1 and n is

even, then |sn − L| < ε, and because (s2n−1) decreases to limit L there is n2 such

that if n > n2 and n is odd, then |sn − L| < ε. So for n > max{n1, n2} we have

|sn − L| < ε.

In fact, this proof gives something more: for each n we have s2n ≤ L ≤ s2n+1, so

L− s2n ≤ s2n+1 − s2n = a2n+1,

and also s2n+2 ≤ L ≤ s2n+1, so

s2n+1 − L ≤ s2n+1 − s2n+2 = a2n+2.

In other words:
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Let S =
∑∞

n=1(−1)n−1an where an ≥ 0, (an) is non-increasing and (an)→ 0

(so S is finite, by Leibniz’ theorem). The sum of the first 2n terms (truncating

at a subtracted term) underestimates S, but by at most a2n+1, while the sum

of the first 2n+ 1 terms (truncating at an added term) overestimates S, but

by at most a2n+2.

Consider, for example,

S =
1

2
− 1

3
+

1

5
− 1

7
+

1

11
− 1

13
+ · · · =

∞∑
n=1

(−1)n−1

pn

where pn is the nth prime number. The number S is finite by Leibniz’ theorem. If

we want to estimate S to within ±0.001, we note that the 168th prime number is 997,

while the 169th is 1009. So the sum of the first 168 terms of the series is within 1/1009

of the limit, and moreover this partial sum underestimates the limit. We conclude that

168∑
n=1

(−1)n−1

pn
≤ S ≤

168∑
n=1

(−1)n−1

pn
+

1

1009
≤

168∑
n=1

(−1)n−1

pn
+ 0.001.

A tedious calculation shows

168∑
n=1

(−1)n−1

pn
= 0.269086 . . .

while

S = 0.269606351 . . . .

16.3 Absolute convergence

Leibniz’ theorem allows us to deal with the question of convergence of alternating series.

For series which have more arbitrary patterns of signs, we need the concept of absolute

convergence.

Definition of absolute convergence If (an) is a sequence of real numbers, we say that

(an) is absolutely summable (or,
∑∞

n=1 an is absolutely convergent) if (|an|) is summable

(that is, if
∑∞

n=1 |an| converges). If (an) is summable but not absolutely summable we

say that is conditionally summable (or that
∑∞

n=1 an is conditionally convergent).

For example, ((−1)n−1/n) is summable (by Leibniz’ theorem) but not absolutely summable

(the Harmonic series diverges), and so is an example of a conditionally summable sequence;

while if f : N→ {+1,−1} is any function then (f(n)/2n) is absolutely convergent.

The example of ((−1)n−1/n) shows that conditional convergence does not imply conver-

gence. On the other hand, we have the following theorem that makes the notion of absolute

convergence a very useful one.
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Theorem 16.1. (Absolute convergence implies convergence) If (an) is absolutely summable,

it is summable.

Proof: Fix ε > 0. Since
∑∞

n=1 |an| converges, we get from the Cauchy criterion that there is

n0 such that

|an+1|+ · · ·+ |am| < ε

for all m > n > n0. But the triangle inequality says

|an+1 + · · ·+ am| < |an+1|+ · · ·+ |am|

and so we have

|an+1 + · · ·+ am| < ε

for all m > n > n0, which says (again by the Cauchy criterion) that
∑∞

n=1 an converges.

As a corollary we get that if (an) is a non-negative summable sequence, and f : N →
{+1,−1} is any function, (f(n)an) is summable; this allows us to deal with many “irregularly

alternating” series. As a specific example, consider(
sin(n2 + 1)

n
√
n

)∞
n=1

.

It is very difficult to keep track of the way that the sign of sin(n2 + 1) changes as n changes

(it does so quite chaotically, starting out

1,−1,−1,−1, 1,−1,−1, 1, 1, 1, 1, 1, 1, 1,−1,−1, 1,−1,−1,−1, 1, 1, 1,−1,−1,−1, 1,−1, 1, 1

according to Mathematica). But, the sequence is easy seen to be absolutely convergent:

0 ≤
∣∣∣∣sin(n2 + 1)

n
√
n

∣∣∣∣ ≤ 1

n
√
n
,

so we get absolute convergence by comparison with the p-series (1/n3/2) (which converges

since p > 1); and so we get convergence of the original sequence.

We have previously seen that finite addition is commutative: for any three reals a1, a2, a3

we have

a1 + a2 + a3 = a1 + a3 + a2 = a2 + a1 + a3 = a2 + a3 + a1 = a3 + a1 + a2 = a3 + a2 + a1

and more generally, no matter the order that n reals are arranged, their sum remains

unchanged.

What about infinite addition? If (an)∞n=1 is a summable sequence, does the sum depend

on the order in which the ai are written? Unfortunately244, the answer is yes.

244Or maybe fortunately — odd results like the one described here make the mathematical landscape

richer.
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Example: By Leibniz’ theorem we have that

1− 1

2
+

1

3
− 1

4
+

1

5
− 1

6
+

1

7
− 1

8
+

1

9
− · · · = L (?)

for some finite number L. Whatever L is, by Leibniz’ theorem we have L > 1 − (1/2) =

1/2 > 0 (on truncating a Leibniz alternating series after a subtracted term, the partial sum

underestimates the limit).

Exercise: Consider the sum

1− 1

2
− 1

4
+

1

3
− 1

6
− 1

8
+

1

5
− 1

10
· · · (??)

obtained from the left-hand side of (?) by rearranging the terms as follows: take the first

positive term first, then the first two negative terms, then the next positive term, then the

next two negative terms, and so on. By combining the 1 with the 1/2, the 1/3 with the 1/6,

the 1/5 with the 1/10, and so on (combine two, skip one, repeat), argue that (??) converges

to L/2 — a different sum to (?), even though the terms are the same, just written in a

different order!

Worse245 is true:

Theorem 16.2. If (an) is conditionally summable, then for any real number α there is a

rearrangement246 (bn) of (an) with
∑∞

n=1 bn = α; and there are also rearrangements with∑∞
n=1 bn =∞ and

∑∞
n=1 bn = −∞.

Proof: We proceed in steps. The details are left as exercises.

• Step 1: Let (cn) be any sequence. Define the positive part of (cn) to be the sequence

(c+
n ) given by

c+
n =

{
cn if cn ≥ 0

0 if cn < 0

and define the negative part to be (c−n ) with

c−n =

{
cn if cn ≤ 0

0 if cn > 0.

Exercise: Convince yourself that for each n

2c+
n = cn + |cn| and 2c−n = cn − |cn|.

Deduce that

If
∑∞

n=1 cn is absolutely convergent then both
∑∞

n=1 c
+
n and

∑∞
n=1 c

−
n converge.

245Or better — see above footnote.
246so (bn) has exactly the same terms as (an), just perhaps in a different order.
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Next convince yourself that for each n

|cn| = c+
n − c−n . (? ? ?)

Deduce that

If both
∑∞

n=1 c
+
n and

∑∞
n=1 c

−
n converge then

∑∞
n=1 cn is absolutely convergent.

These two facts together say that for any arbitrary sequence (cn)∑∞
n=1 cn is absolutely convergent if and only if both

∑∞
n=1 c

+
n and

∑∞
n=1 c

−
n

converge.

• Step 2: Now let (an) be the conditionally summable sequence hypothesized in the

theorem. Let pn be the positive part of (an), and let (qn) be the negative part. Since

(an) is not absolutely summable, by Step 1 of the proof we know that at least one of∑∞
n=1 pn,

∑∞
n=1 qn diverges (if the former, then to +∞; if the latter, to −∞).

Exercise: Suppose
∑∞

n=1 pn diverges to +∞, but
∑∞

n=1 qn converges to some fixed

number L. Using an = pn + qn (similar to (? ? ?) above), argue that
∑∞

n=1 an diverges

to +∞, a contradiction. (We proved something very like this in class.)

Similarly if
∑∞

n=1 pn converges, but
∑∞

n=1 qn diverges to −∞ then we get the contradic-

tion that
∑∞

n=1 an diverges to −∞. So the conclusion of Step 2 is

If
∑∞

n=1 an is conditionally convergent then both
∑∞

n=1 pn diverges to +∞
and

∑∞
n=1 qn diverges to −∞.

• Step 3: (THE MEAT) Fix α > 0. Construct a rearrangement of (an) whose sum

converges to α, as follows:247

– Start the rearrangement by taking initial terms from (pn), until the partial sum of

the rearrangement thus far constructed either reaches or exceeds α.

∗ Question: How do we know that such a point can be reached?

∗ Question: Suppose it is reached exactly when pn1 is added. By how much at

most can the partial sum exceed α at this point?

– Continue the rearrangement by taking initial terms from (qn) until the partial sum

of the rearrangement thus far constructed either reaches or falls below α.

∗ Question: How do we know that such a point can be reached?

∗ Question: Before this point is reached, by how much at most can the partial

sums exceed α?

247Pictures will be very helpful here!
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∗ Question: Suppose this point is reached exactly when qn1 is “added”248. By

how much at most can the partial sum fall short of α at this point?

– Continue the rearrangement by going back to where you left off from (pn), and

continuing to take terms from (pn) until the partial sum of the rearrangement

either reaches or exceeds α.

∗ Question: How do we know that such a point can be reached?

∗ Question: Before this point is reached, by how much at most can the partial

sums fall short of α?

∗ Question: Suppose this point is reached exactly when pn2 is added. By how

much at most can the partial sum exceed α at this point?

– Continue in this manner, swapping back and forth between (pn) and (qn) alternately

adding from (pn) until α is reached or exceeded, then adding from (qn) until α is

reached or fallen short of.

∗ Question: How do we know that this process can continue indefinitely?

∗ Question: Suppose that the points where you flip from choosing from one sub-

sequence to the other happen at pn1 , qn1 , pn2 , qn2 , and so on. In terms of these

quantities, by how much at most can the partial sums of the rearrangement

differ from α?

Exercise: Use what you know249 about the sequence (pn1 , qn1 , pn2 , qn2 , . . .) to

conclude that the rearrangement just constructed is summable with sum α.

– Step 4: Modify the argument to deal with negative α, α = 0, α =∞ and α = −∞.

The story for absolutely convergent sequences vis-à-vis infinite commutativity is completely

different. Here’s a theorem that that says that if the sequence (an) is absolutely convergent,

then the order in which the terms are added does not impact the sum.

Theorem 16.3. If (an) is absolutely summable, and (bn) is any rearrangement of (an), then

• (bn) is absolutely summable,

•
∑∞

n=1 an =
∑∞

n=1 bn, and

•
∑∞

n=1 |an| =
∑∞

n=1 |bn|.

Proof: Denote by sn the partial sums of (ak)
∞
k=1 (i.e., sn =

∑n
k=1 ak) and by tn the partial

sums of (bn). Let ` =
∑∞

n=1 an.

248“added” in quotes because qn is negative.
249Something basic, coming from conditional convergence of (an).
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Fix ε > 0. There is N ∈ N such that |`− sN | < ε/2 (by absolute convergence of (an)),

and any finite sum from {|aN+1|, |aN+2|, · · · } is at most ε/2 (applying the Cauchy criterion

to (|an|)).
Now because (bn) is a rearrangement of (an), there is an M ∈ N (perhaps much larger

than M) such that all of a1, . . . , aN appear among b1, . . . , bM .

For m > M , we have

|`− tm| = |`− sN − (tm − sN)|
≤ |`− sN |+ |tm − sN |
< ε

(the last inequality because |tm − sN | a finite sum from among {|aN+1|, |aN+2|, · · · }). So∑∞
n=1 bn = ` =

∑∞
n=1 an.

To deal with
∑∞

n=1 |bn|, note that (|bn|) is a rearrangement of (|an|), and since (|an|)
absolutely summable, by what we just proved,

∑∞
n=1 |bn| converges to

∑∞
n=1 |an|.
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