
17 Power series

17.1 Introduction to Taylor series

Recall that as an application of the ratio test, we said that∑
n≥0

x2n

(2n)!

converges to a limit for all real x. Let f(x) be limit. We claim that f(x) = coshx. Indeed,

by Taylor’s theorem with Lagrange form of the remainder term, we have that for each fixed

x there is some t between 0 and x for which

coshx = 1 +
x2

2!
+ · · ·+ x2n

(2n)!
+ (cosh)(2n+1)(t)

x2n+1

(2n+ 1)!
.

so ∣∣∣∣coshx−
(

1 +
x2

2!
+ · · ·+ x2n

(2n)!

)∣∣∣∣ =

∣∣∣∣sinh t
x2n+1

(2n+ 1)!

∣∣∣∣ .
Now between 0 and x, | sinh t| is never more than sinh |x|, and so∣∣∣∣coshx−

(
1 +

x2

2!
+ · · ·+ x2n

(2n)!

)∣∣∣∣ ≤ | sinhx| |x|
2n+1

(2n+ 1)!
.

For each fixed real x, we have that | sinhx||x2n+1|/(2n + 1)! → 0 as n → ∞ and so, by

definition of convergence of a sequence to a limit, we get that(
1 +

x2

2!
+ · · ·+ x2n

(2n)!

)∞
n=0

→ coshx

for each fixed real x, that is,

coshx =
∞∑
n=1

x2n

(2n)!
.

Note that we used the ratio test to conclude that (x2n/(2n)!) converges for all real x, but in

fact that was unnecessary, given Taylor’s theorem. Indeed, suppose we have a function f(x),

and we know that for all fixed x in some set A, the remainder term Rn,a,f (x) goes to 0 as n

goes to infinity. Then we have

|f(x)− Pn,a,f (x)| → 0

as n goes to infinity, so that, directly from the definition of convergence, for each fixed x ∈ A,

(f (n)(a)(x− a)n/n!) is summable, and the sum is f(x). That is, for x ∈ A

f(x) =
∞∑
n=0

f (n)(a)

n!
(x− a)n.

So, for example, we have
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• ex =
∑∞

n=0
xn

n!
for all real x,

• sinx =
∑∞

n=0(−1)n x2n+1

(2n+1)!
for all real x,

• cosx =
∑∞

n=0(−1)n x2n

(2n)!
for all real x,

• tan−1 x =
∑∞

n=0(−1)n x
2n+1

2n+1
for −1 ≤ x ≤ 1 (and note that when |x| > 1, the sum does

not converge, by the vanishing criterion, although tan−1 is defined for |x| > 1).

The expression
∞∑
n=0

f (n)(a)

n!
(x− a)n

is called the Taylor series250 of f at (or about) a (and evaluated at x); think of it as an

“infinite degree Taylor polynomial”. Sometimes, the Taylor series evaluates to the function

it is the Taylor series of, at all points in the domain of the function (e.g. when f(x) = ex

and a = 0); sometimes, it evaluates to the function at some points of the domain, but not all

of the function (e.g. when f(x) = tan−1(x) and a = 0); and sometimes, it evaluates to the

function at the single points of the domain a (e.g. when

f(x) =

{
e−1/x2

if x 6= 0

0 if x = 0,

at a = 0). We will discuss this in more detail later.

We now consider the degree to which the Taylor series of a function is a useful tool for

understanding the function. We start with an example. For clarity, write

• sinn(x) for P2n+1,0,sin(x) = x− x3

3!
+ x5

5!
− · · ·+ (−1)n x2n+1

(2n+1)!

and

• cosn(x) for P2n,0,cos(x) = 1− x2

2!
+ x4

4!
− · · ·+ (−1)n x2n

(2n)!
.

As we have earlier observed, we have that for all real x

sinx =
∞∑
n=0

(−1)n
x2n+1

(2n+ 1)!
= lim

n→∞
sinn(x)

and

cosx =
∞∑
n=0

(−1)n
x2n

(2n)!
= lim

n→∞
cosn(x).

Notice that ∫ x

0

cosn(t) dt = sinn(x)

250When a = 0, the Taylor series is often referred to as the Maclaurin series.
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so that

sinx = lim
n→∞

∫ x

0

cosn(t) dt. (?)

Can we use (?) to conclude that sinx =
∫ x

0
cos(t) dt for all real x? In other words, is it true

that

lim
n→∞

∫ x

0

cosn(t) dt =

∫ x

0

lim
n→∞

cosn(t) dt?

In general, we cannot draw such a conclusion. That is, if fn : R → R is a sequence of

functions, one for each n ∈ N, with the properties that for all real x, each of

• limn→∞ fn(x),

•
∫ x

0
limn→∞ fn(t) dt

•
∫ x

0
fn(t) dt and

• limn→∞
∫ x

0
fn(t) dt

exist, we cannot conclude that

lim
n→∞

∫ x

0

fn(t) dt =

∫ x

0

lim
n→∞

fn(t) dt (??)

for all x.

Here is a counter-example. Define fn via:

fn(x) =


0 if x ≤ 0 or x ≥ 2/n

n2x if 0 ≤ x ≤ 1/n

2n− n2x if 1/n ≤ x ≤ 2/n.

Observe251 that for each real x,

• limn→∞ fn(x) = 0 (if n ≤ 0, this is automatic; if x > 0 then as long as n > 2/x we have

fn(x) = 0),

•
∫ x

0
limn→∞ fn(t) dt = 0 (this is automatic from the last observation),

•
∫ x

0
fn(t) dt exists for all n (fn is continuous and bounded) and

•

lim
n→∞

∫ x

0

fn(t) dt =

{
0 if x ≤ 0 (immediate)

1 if x > 0 (for all n > 2/x,
∫ x

0
fn(t) dt = 1).

So

lim
n→∞

∫ x

0

fn(t) dt 6=
∫ x

0

lim
n→∞

fn(t) dt

for all x; only for x ≤ 0.

In the next section, we isolate the condition that is needed to make (??) hold, and explore

its consequences.

251Draw a graph to see what’s going on!
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17.2 Pathologies of pointwise convergence

At the end of the last section we saw that if a sequence of integrable functions (fn) converges

pointwise to an integrable limit f on some set A, meaning that for each x ∈ A we have

fn(x)→ f(x) as n→∞, then it is not necessarily that case that the limit of the integrals of

the fn’s is the integral of the limit.

It is fairly clear what is going on in the counter-example: although the functions fn are

converging, at each real x, to the value 0, there is some sense in which the functions fn as

a whole are not converging to 0: we cannot put an ε-width window around the x-axis, and

then find an N large enough so that for all n > N the graph of fn is lying completely inside

that window. What we can do is, for each specific x, find an N so that for all n > N we have

fn(x) within ε of f(x); but as the x’s get closer to 0, the required N gets larger and larger.

Here’s another, perhaps more worrying example. Let fn : R→ R be defined by

fn(x) =


0 if x ≤ 0

xn if 0 ≤ 1 ≤ 1

1 if x ≥ 1.

For each x we have that fn(x) converges to a limit as n grows. Specifically,

lim
n→∞

fn(x) =

{
0 if x < 1

1 if x ≥ 1.

Notice that

Each fn is continuous, but the limit f is not.

So, the limit of continuous functions need not be continuous. This example can be modified

slightly, by rounding the corners of fn, to also yield a sequence of differentiable functions

that tends to a limit, but not to a differentiable limit.

It’s not as clear what the problem might be in this second (pair of) example(s); but a

little thought shows that it suffers from the same issue as the first example. Given ε > 0, for

each x there is an N large enough so that fn(x) is within ε of limn→∞ fn(x) for all n > N .

But if we put an ε-width window around the limit function (a strip of width ε around the

x-axis, for x < 1, and a strip of width ε around the line y = 1, for x ≥ 1), then there is no

single N with the property that for all n > N the graph of fn lies inside this window: for

each n ∈ N, the point ( n
√

(1/2), 1/2) is on the graph of fn, but it is not in the window as

long as ε < 1/2.

So: we can talk about a sequence (fn) of functions (all with the same domain A) converging

to a limit f (also with domain A), if for each x ∈ A we have fn(x)→ f(x) as n→∞. This

kind of convergence is called pointwise convergence. But pointwise convergence appears to be

quite weak; it preserves neither continuity nor integrability.

Or: we can talk about a sequence (fn) of functions (all with the same domain A) converging

to a limit f (also with domain A) if the graphs of the fn’s converge to the graph of f , in the
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sense that for all ε > 0 there is N such that for all n > N the graph of fn lies completely

inside a window of width ε around the graph of f . This notion of converges is easily seen

to imply pointwise convergence; and as we are about to see, it behaves much better with

respect to continuity, integrability and differentiability. Before exploring this, we made the

definition of this kind of convergence, which we call uniform convergence, precise.

17.3 Definition and basic properties of uniform convergence

We begin with the definition.

Definition of uniform convergence Let (fn) be a sequence of functions, all defined on

some domain A, and let f be a function, also defined on the domain A. Say that (fn)

converges uniformly to f on A if for all ε > 0 there is N such that n > N implies that

for all x ∈ A,

|fn(x)− f(x)| < ε.

It’s worth symbolically comparing the definition of “fn → f pointwise on A”:

(∀ε > 0)(∀x ∈ A)(∃N)((n > N)⇒ (|fn(x)− f(x)| < ε))

with that of “fn → f uniformly on A”:

(∀ε > 0)(∃N)(∀x ∈ A)((n > N)⇒ (|fn(x)− f(x)| < ε)).

In pointwise convergence, N depends on both ε and x; but in uniform convergence, N only

depends on ε — for each ε, the same N works for every x. This should seem familiar — it is

essentially the same distinction as between continuity and uniform continuity.

The value of uniform convergence is conveyed in the following three theorems, which

(roughly) say that

• the uniform limit of continuous functions is continuous,

• the integral of the uniform limit is the limit of the integrals, and

• (modulo some extra conditions) the derivative of the uniform limit is the limit of the

derivatives.

Theorem 17.1. Let (fn) be a sequence of functions that are all defined and continuous on

[a, b], and that converge uniformly on [a, b] to some a function f . Then f is continuous on

[a, b].

Proof: Unsurprisingly, we will show the slightly stronger statement that f is uniformly

continuous on [a, b]. Given ε > 0 we want a δ > 0 such that |x− y| < δ (with x, y ∈ [a, b])

implies |f(x)− f(y)| < ε. We write

|f(x)− f(y)| = |(f(x)− fn(x)) + (fn(x)− fn(y)) + (fn(y)− f(y))|
≤ |f(x)− fn(x)|+ |fn(x)− fn(y)|+ |f(y)− fn(y)|. (?)
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By uniform convergence of fn to f , we know that there is N such that n > N implies both

|f(x)− fn(x)| < ε

3
, |f(y)− fn(y)| < ε

3
. (??)

Fix any n > N . Since fn is uniformly continuous (it is a continuous function on a closed

interval), there is δ > 0 such that |x− y| < δ (with x, y ∈ [a, b]) implies |fn(x)− fn(y)| < ε/3.

But this implies, via (?) and (??) that whenever |x− y| < δ (with x, y ∈ [a, b]) we have

|f(x)− f(y)| < ε

3
+
ε

3
+
ε

3
= ε.

Theorem 17.2. Let (fn) be a sequence of functions that are all defined and integrable on

[a, b], and that converge uniformly on [a, b] to some a function f . Then f is integrable252 on

[a, b] and ∫ b

a

f = lim
n→∞

∫ b

a

fn.

Proof: We first check that f is bounded. By uniform convergence of (fn) to f there is N such

that n > N implies |fn(x)− f(x)| < 1 for all x ∈ [a, b], which says that |f(x)| < |fn(x)|+ 1.

Now fix such an n > N . Since fn is integrable, it is bounded on [a, b], say by M ; but then

that says that f is bounded on [a, b] by M + 1.

Next we show that f is integrable on [a, b]. Fix ε > 0. By uniform convergence of (fn) to

f there is N such that n > N implies

|fn(x)− f(x)| < ε

4(b− a)

for all x ∈ [a, b]. Fix such an n > N . Since fn is integrable on [a, b], there is a partition

P = (t0, . . . , tm) of [a, b] with

U(fn, P )− L(fn, P ) =
m∑
i=1

(Mn
i −mn

i )(ti − ti−1) < ε/2,

where Mn
i is the supremum of fn on [ti−1, ti], and mn

i is the infimum.

Because |fn(x)− f(x)| < ε
4(b−a)

for all x ∈ [a, b], we have that

Mi ≤Mn
i +

ε

4(b− a)
, mi ≥ mn

i − fracε4(b− a)

where Mi is the supremum of f on [ti−1, ti], and mi is the infimum. It follows that

Mi −mi ≤Mn
i −mn

i +
ε

2(b− a)

252Spivak takes integrability of f as a hypothesis, but it is in fact implied by uniform convergence, and is a

good exercise in definition of the integral.
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for each i, and so

U(fn, P )− L(fn, P ) =
m∑
i=1

(Mi −mi)(ti − ti−1)

≤
m∑
i=1

(
Mn

i −mn
i +

ε

2(b− a)

)
(ti − ti−1)

=
m∑
i=1

(Mn
i −mn

i )(ti − ti−1) +
ε

2(b− a)

m∑
i=1

(ti − ti−1)

<
ε

2
+
ε

2
= ε,

and so we conclude that f is integrable on [a, b].

Finally, we show that
∫ b
a
f = limn→∞

∫ b
a
fn. Fix ε > 0. By uniform convergence of (fn) to

f there is N such that n > N implies

|fn(x)− f(x)| < ε

b− a

for all x ∈ [a, b]. So (using integrability of fn and f to justify the existence of the integrals

below) ∣∣∣∣∫ b

a

fn −
∫ b

a

f

∣∣∣∣ ≤ ∫ b

a

|fn − f | < (b− a)
ε

b− a
= ε,

which says
∫ b
a
fn →

∫ b
a
f as n→∞.

It would be nice to now have a theorem that says

Let (fn) be a sequence of functions that are all defined and differentiable on [a, b],

and that converge uniformly on [a, b] to some a function f . Then f is differentiable

on [a, b] and f ′(x) = limn→∞ f
′
n(x) for each x ∈ [a, b].

Unfortunately, such a theorem is false; the uniform limit of differentiable functions on a closed

interval need not be differentiable, as shown in this picture taken from Spivak (Chapter 24,

Figure 8):
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And Spivak has a further example showing that even if f is differentiable, it need not be the

case that f ′(x) = limn→∞ f
′
n(x) for each x ∈ [a, b]. Some quite careful hypothesis are needed

to get an analog of Theorems 17.1 and 17.2 for differentiability. Unlike Theorem 17.2, where

the hypothesis were natural but the proof involved, here the proof is very easy, given the

correct hypotheses.

Theorem 17.3. Let (fn) be a sequence of functions that are all defined and differentiable on

[a, b], and that converge pointwise on [a, b] to some a function f . Suppose also that each f ′n is

integrable on [a, b], and that the f ′n converge uniformly to some continuous function g. Then

f is differentiable on [a, b] and f ′(x) = limn→∞ f
′
n(x) for each x ∈ [a, b].

Proof: From Theorem 17.2, then the fundamental theorem of calculus we have that for each

x ∈ [a, b], ∫ x

a

g = lim
n→∞

∫ x

a

f ′n

= lim
n→∞

(fn(x)− fn(a))

= f(x)− f(a).

So

f(x) = f(a) +

∫ x

a

g,

and (using continuity of g) another application of the fundamental theorem of calculus gives

that f is differentiable at x, and that

f ′(x) = g(x) = lim
n→∞

f ′n(x).

17.4 Application to power series

Definition of a power series A power series (at, or about, 0) is a series of the form

a0 + a1x+ a2x
2 + · · ·+ anx

n + · · ·

where x and a0, a1, . . . are real numbers. More generally, for a real number a a power

series at, or about, a is a series of the form

a0 + a1(x− a) + a2(x− a)2 + · · ·+ an(x− a)n + · · · .

At least initially, we’ll only think about power series at 0. An example of a power series is

the Taylor series of function f that is infinitely differentiable at 0:

f(0) + f ′(0)x+
f ′′(0)

2!
x2 + · · ·+ f (n)(0)

n!
xn + · · · .
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Consistent with our previous notation, we say that a power series converges if the sequence

(anx
n) is summable, and converges absolutely if (|an||x|n) is summable. By definition of

summability, saying that a power series converges is equivalent to saying that the sequence

(sn(x)) of partial sums converges, where

sn(x) =
n∑
k=0

akx
k,

and saying that a power series converges absolutely is equivalent to saying that the sequence

(s̄n(x)) of “absolute” partial sums converges, where s̄n(x) =
∑n

k=0 |ak||x|k.
Our aim now is to use the results of the last section to explore situations in which a power

series converges, and the degree to which a power series can be manipulated in “natural”

ways (specifically, via term-by-term integration and differentiation). Rather than stating a

general theorem (which would be rather long) we will develop the theory piece by piece.

So, let f(x) = a0 + a1x + a2x
2 + · · · + anx

n + · · · be a power series, with partial sums

sn(x) =
∑n

k=0 akx
k and “absolute” partial sums s̄n(x) =

∑n
k=0 |ak||x|k. Note that f here

is not (yet) naming a function, since the power series may not be summable; it is simply

convenient shorthand for the expression a0 + a1x+ a2x
2 + · · ·+ anx

n + · · · .

Basic working hypothesis Suppose that x0 ≥ 0 is a real number satisfying that

lim
n→∞

|an+1|
|an|

x0 exists and equal some ` < 1.

We begin by establishing that under this hypothesis,

for all x ∈ [−x0, x0] the power series f(x) converges to a finite limit.

Indeed, for x = 0 the claim is trivial, and for x 6= 0 apply the ratio test to the series∑∞
n=0 |anxn|. We get that

|an+1x
n+1|

|anxn|
=

(
|an+1|
|an|

x0

)
|x|
x0

→ `
|x|
x0

< 1,

the existence of the limit following from the basic working hypothesis. From the ratio test

we conclude that (anx
n) is absolutely summable, and so in particular is summable, i.e., the

power series is both convergent and absolutely convergent. So now f is a function with

domain [−x0, x0], and f(x) is more than just shorthand for the power series; it is the value

of the function.

Next we establish that

the function f is continuous on [−x0, x0].

What we will actually show is that
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the sequence of partial sums sn(x) converges uniformly to f(x) on [−x0, x0]

(we already know that is converges pointwise). From Theorem 17.1, the continuity of f on

[−x0, x0] follows immediately. To see uniform convergence, note that for x ∈ [−x0, x0] we

have

|f(x)− sn(x)| =

∣∣∣∣∣
∞∑

k=n+1

akx
k

∣∣∣∣∣
≤

∞∑
k=n+1

|ak||x|k

≤
∞∑

k=n+1

|ak||x0|k.

Because (akx
k
0) is absolutely summable (we just proved that above), for every ε > 0, n can

be chosen large enough that
∑∞

k=n+1 |ak||x0|k < ε,253 and since the choice of n depends only

on x0 (and ε) it works for all x ∈ [−x0, x0].

Notice that in the first inequality above we have slipped in a “triangle inequality” for

series: if (cn) is absolutely summable (so both
∑∞

n=1 cn and
∑∞

n=1 |cn| exist), then∣∣∣∣∣
∞∑
n=1

cn

∣∣∣∣∣ ≤
∞∑
n=1

|cn|.

This is an easy exercise.

In summary, so far we have show that if a0 + a1x + a2x
2 + · · ·+ anx

n + · · · is a power

series, and if x0 is a non-negative number for which limn→∞ |an+1|x0/|an| exists and is less

than 1, then

• for each x ∈ [−x0, x0], a0 + a1x + a2x
2 + · · · + anx

n + · · · converges to a finite limit

f(x), and in fact converges absolutely,

• the convergence is uniform on [−x0, x0], and

• f is continuous on [−x0, x0].

The situation described above is often referred to as absolute uniform convergence of the

power series; and the power series is said to converge absolutely uniformly.

Next, we establish that

f is differentiable on [−x0, x0], and its derivative is given by

f ′(x) = a1 + 2a2x+ 3a3x
2 + · · ·+ (n+ 1)an+1x

n + · · · .

Moreover, the sequence described above is absolutely uniformly convergent on

[−x0, x0].

253Formally: by the Cauchy condition, n can be chosen large enough so that for all m > n we have∑m
k=n+1 |ak||x0|k < ε, so by the boundedness criterion, for suitably large n we have that

∑∞
k=n+1 |ak||x0|k

exists and is at most ε.
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To verify all this, the first thing we do is check that a1 +2a2x+3a3x
2 +· · ·+(n+1)an+1x

n+· · ·
is absolutely uniformly convergent on [−x0, x0]. But this follows immediately from what we

have just done:

lim
n→∞

(n+ 2)|an+2|
(n+ 1)|an+1|

|x0| = lim
n→∞

|an+1|
|an|

|x0| < 1

(by the basic working hypothesis for a0 + a1x + a2x
2 + · · · + anx

n + · · · ), so the basic

working hypothesis is satisfied for a1 + 2a2x + 3a3x
2 + · · · + (n + 1)an+1x

n + · · · , and we

can apply all the results we have proven about a0 + a1x + a2x
2 + · · · + anx

n + · · · to

a1 + 2a2x+ 3a3x
2 + · · ·+ (n+ 1)an+1x

n + · · · .
So now we know that the sequence (tn(x)) of partial sums of a1 + 2a2x+ 3a3x

2 + · · ·+
(n+ 1)an+1x

n + · · · (where tn(x) =
∑n

k=0(k+ 1)ak+1x
k) converges uniformly to a limit that is

continuous on [−x0, x0]. But tn(x) = s′n+1(x), where recall sn(x) =
∑n

k=0 akx
k is the partial

sum of a0 + a1x+ a2x
2 + · · ·+ anx

n + · · · . It follows that (sn(x)) converges uniformly to a

limit that is continuous on [−x0, x0]. Now also (sn) is a sequence of functions that are all

defined and differentiable on [−x0, x0], and that converge pointwise (in fact, uniformly) on

[−x0, x0] to f . And finally, clearly each s′n is integrable on [−x0, x0]. So all the hypotheses of

Theorem 17.3 are satisfied, and we conclude that f is differentiable on [−x0, x0] and

f ′(x) = lim
n→∞

s′n(x) = a1 + 2a2x+ 3a3x
2 + · · ·+ (n+ 1)an+1x

n + · · ·

for each x ∈ [−x0, x0].

This whole argument can be repeated of f ′; we conclude that f is infinitely differentiable

on [−x0, x0], and that the successive derivatives can be found by differentiating the power

series term-by-term.

Finally, we turn to integrability.

f is integrable on [−x0, x0], and the function g : [−x0, x0] → R defined by

g(x) =
∫ x

0
f(t) dt is given by

g(x) = a0x+
a1

2
x2 +

a2

3
x3 + · · ·+ an−1

n
xn + · · · .

Moreover, the sequence described above is absolutely uniformly convergent on

[−x0, x0].

The absolute uniform convergence of the sequence is verified exactly as in the case of

differentiation. For the rest, note that since (sn(x)) converges uniformly to f on [−x0, x0],

we can apply Theorem 17.3 to conclude that f is integrable on [−x0, x0]254 and that∫ x

0

f(t) dt = lim
n→∞

∫ x

0

sn(t) dt

= lim
n→∞

∫ x

0

(
a0x+

a1

2
x2 +

a2

3
x3 + · · ·+ an

n+ 1
xn+1

)
= a0x+

a1

2
x2 +

a2

3
x3 + · · ·+ an−1

n
xn + · · · .

254We already knew that f was integrable, since it is continuous. But there is no harm in discovering this

fact by a second route.
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This whole argument can be repeated of g; we conclude that f is infinitely integrable on

[−x0, x0]255, and that the successive integrals can be found by integrating the power series

term-by-term.

Time for a second (and final) summary: if a0 + a1x+ a2x
2 + · · ·+ anx

n + · · · is a power

series, and if x0 is a non-negative number for which limn→∞ |an+1|x0/|an| exists and is less

than 1, then

• for each x ∈ [−x0, x0], a0 +a1x+a2x
2 + · · ·+anx

n + · · · converges absolutely uniformly

to a finite limit f(x),

• f is continuous on [−x0, x0],

• f is differentiable arbitrarily many times on [−x0, x0]; each derivative is found by

differentiating the power series term-by-term, and the resulting power series is still

absolutely uniformly convergent on [−x0, x0],

• g(x) =
∫ x

0
f(t) dt is defined on [−x0, x0]; it is found by integrating the power series

term-by-term, and the resulting power series is still absolutely uniformly convergent on

[−x0, x0] (so the process can be repeated arbitrarily many times).

We refer to all this as the power series being “nice”.

Of course, we would like the power series to be nice for as large an x0 as possible.

If limn→∞ |an+1|/|an| doesn’t exist, then there is no x0 (other than x0 = 0) for which

limn→∞ |an+1|x0/|an| exists. So in this case, we will say nothing.

If limn→∞ |an+1|/|an| = 0 then for all x0 we have limn→∞ |an+1|x0/|an| = 0 < 1. So in

this case, the power series is nice on the whole real line.

If limn→∞ |an+1|/|an| = 1/R > 0, then as long as x0 < R, the power series is nice on

[−x0, x0]. On the other hand, it is easy to see (by the ratio test, or just by the fact that the

nth term does not go to zero) that if |x0| > R then the power series does not converge.

If limn→∞ |an+1|/|an| = +∞ then only for x0 = 0 do we have limn→∞ |an+1|x0/|an| < 1,

and again it is easy to see (by the fact that the nth term does not go to zero) that if x0 6= 0

then the power series does not converge. So in this case, the power series is nice only at 0.

So, in summary:

if limn→∞ |an+1|/|an| = 1/R > 0, then the power series is nice on every closed

interval contained in (−R,R), but not on any closed interval that includes anything

outside [−R,R].256 R is referred to as the radius of convergence of the power

series. If limn→∞ = 0, then the power series is nice on every closed interval

contained in the reals; in this case we say that the radius of convergence is infinite.

If limn→∞ |an+1|/|an| = +∞ then the power series is nice only at 0; in this case

we say that the radius of convergence is 0. In all three cases, the power series has

255No surprise — unlike with differentiation, once a function is integrable once, it is infinitely integrable
256What happens at R and −R has to be dealt with on a case-by-case basis.
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a radius of convergence, inside of which it is nice, and outside of which it does

not converge.

If limn→∞ |an+1|/|an| does not exist, then the power series might still have a radius of

convergence; that is a story for another day (year?) involving the notion of lim sup.

For power series at values a other than zero, that is, power series of the form

a0 + a1(x− a) + a2(x− a)2 + · · ·+ an(x− a)n + · · · ,

the story is essentially the same: with R defined exactly as before, the power series is nice on

every closed interval contained in (a−R, a+R); the proof is almost exactly the same, just a

little bit more annoying as it involves the extra parameter a.

If a power series a0 + a1x+ a2x
2 + · · · has some radius of convergence R, what can we

say about the function f(x) that the power series converges to, inside (−R,R)? Well,

• f(0) = a0.

• f ′(x) = a1 + 2a2x+ 3a3x
2 + 4a4x

3 + · · · so f ′(0) = a1.

• f ′′(x) = 2a2 + 6a3x+ 12a4x
2 + · · · so f ′′(0) = 2a2 or a2 = f ′′(0)/2.

• f ′′′(x) = 6a3 + 24a4x+ · · · so f ′′′(0) = 6a3 or a3 = f ′′′(0)/6 = f ′′′(0)/3!.

• In general, an = f (n)(0)/n!

In other words:

If a power series a0 + a1x + a2x
2 + · · · has some radius of convergence R, and

so converges to a function f(x) inside (−R,R), then a0 + a1x+ a2x
2 + · · · is in

fact the Taylor series of f . In particular, that means that is any other power

series converges to f on (−R,R), that other power series must be identical to

a0 + a1x+ a2x
2 + · · · .

We finish up this section with some examples.

• exp, sin, cos: we already know, from Taylor’s theorem, that

– ex =
∑∞

n=0
xn

n!
for all real x,

– sinx =
∑∞

n=0(−1)n x2n+1

(2n+1)!
for all real x,

– cosx =
∑∞

n=0(−1)n x2n

(2n)!
for all real x,

and it is easy to apply the theory we have developed to show that each of these power

series are absolutely uniformly convergent on every closed interval in the reals (so,

radius of convergence is +∞ in each case). This allows us to confirm, by term-by-term

differentiation, that all the well-known relations between these functions hold, such as
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– the derivative of ex is ex,

– an antiderivative of cos is sin, and

– sin′′+ sin = 0, cos′′+ cos = 0.

Recall that we proved that the only continuous functions f : R→ R satisfying f ′ = f

are functions of the form f(x) = aex, so in particular the only f : R → R satisfying

f ′ = f and f(0) = 1 is f(x) = ex; and that the only continuous functions f : R→ R
satisfying f ′′ + f = 0 are functions of the form f(x) = a sinx+ b cosx, so in particular

the only f : R→ R satisfying f ′′ + f = and f(0) = 0, f ′(0) = 1 is f(x) = sinx, while

the only f : R → R satisfying f ′′ + f = and f(0) = 1, f ′(0) = 0 is f(x) = cosx.

But from the theory we have just developed, we can conclude (without ever knowing

anything about the exponential function) that if f(x) is defined by

f(x) =
∞∑
n=0

xn

n!
,

then f ′ = f and f(0) = 1; so we could use this as an alternate definition of the

exponential function. Similarly, we could formally define sin and cos via power series.

Many authors take this approach.

• log: We can easily check that the power series

f(x) = 1 + x+ x2 + · · ·+ xn + · · ·

has radius of convergence 1. We also already know that f(x) = 1/(1 − x) for all

x ∈ (−1, 1). So, substituting −x for x, we have

1

1 + x
= 1− x+ x2 − · · ·+ (−1)nxn + · · · .

By the theory we have just developed, we have∫ x

0

dt

1 + t
= x− x2

2
+
x3

3
− · · ·+ (−1)n−1x

n

n
+ · · · ,

valid for all x between −1 and 1. But
∫ x

0
dt

1+t
= log(1 + x), and the power series on the

right above is the Taylor series at 0 of log(1 + x); so we have just shown that the Taylor

series of log(1 + x) converges to log(1 + x), that is

log(1 + x) =
∞∑
n=1

(−1)n−1x
n

n
,

for x ∈ (−1, 1). Recall from a homework exercise that it was only easy to analyze the

remainder term of the Taylor polynomial, and obtain the above result, for −1/2 < x < 1.

The theory of uniform convergence allows us to easily fill in the gap.
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• Estimating integrals. Power series can be used to estimate integrals. For example,

e−x
2

= 1− x2 +
x4

2!
− x6

3!
+ · · ·

(just evaluate the series for ex at −x2/2; since the series is nice for all real x, it is nice for

−x2/2). The above series for e−x
2

is easily seen to have infinite radius of convergence,

so we can write∫ x

0

e−t
2

dt = x− x3

3
+

x5

5 · 2!
− x7

7.3!
+ · · ·+ (−1)n

x2n+1

(2n+ 1)n!
+ · · · .

For example, what is
∫ 1

0
e−t

2
dt? Setting x = 1 above, and using Leibniz test for

alternating series (in the strong form that gives an error estimate of the magnitude of

the next term after truncation) we get that for each n∫ 1

0

e−t
2

dt

(
n∑
k=0

(−1)k
1

(2k + 1)k!

)
± 1

(2n+ 3)(n+ 1)!

Taking n = 10 we get ∫ 1

0

e−t
2

dt = 0.746824133± 0.000000001.

• More general series. What if limn→∞
|an+1|
|an| doesn’t exist? If (|an+1|/|an|) is eventually

bounded above by M > 0, then whole theory described above goes through, as long as

Mx0 < 1257.

For an example, consider the Fibonacci numbers, defined by F0 = 0, F1 = 1 and

Fn = Fn1 + Fn−2 for n ≥ 2. We can form the “generating function” of the Fibonacci

numbers:

F (x) = F0 + F1x+ F2x
2 + · · · .

Since (Fn) is increasing we have

Fn+1

Fn
≤ 2Fn

Fn
≤ 2,

and so F (x) converges absolutely uniformly on some interval around 0 (for example, on

[−0.49, 0.49]). We have

F (x) = F0 + F1x+ F2x
2 + · · ·

= x+ (F1 + F0)x2 + (F2 + F1)x3 + · · ·
= x+ x(F1x+ F2x

2 + · · · ) + x2(F0 + F1x+ F2x
2 + · · · )

= x+ xF (x) + x2F (x)

257Exercise!
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(with all manipulations easily seen to be valid inside the interval [−0.49, 0.49]) so

F (x) =
x

1− x− x2

=
A

1− ϕ1x
+

B

ϕ2x
, (partial fractions)

where (1− ϕ1x)(1− ϕ2x) = 1− x− x2, so ϕ1 + ϕ2 = 1, ϕ1ϕ2 = −1, so

ϕ1 =
1 +
√

5

2
, ϕ2 =

1−
√

5

2

and A,B are constants. So

Fn = Aϕn1 +Bϕn2 .

(This is obtained by using the obvious power series for 1/(1− ϕ1x) and 1/(1− ϕ2x)).

At n = 0 we get A+B = 0, and at n = 1 we get Aϕ1 +Bϕ2 = 1, so

A =
1√
5
, B =

−1√
5
,

and so finally we get the remarkable Binet’s formula:

Fn =
1√
5

((
1 +
√

5

2

)n

−

(
1−
√

5

2

)n)

All manipulations were valid because all power series involved converge in some non-zero

interval around 0, and everything can be done inside an interval of convergence that

works for all power series involved.

There is a vast literature on power series; we have only scratched the surface. Hopefully

we have done enough to see that power series can be a very useful way of viewing functions.
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