
4 Induction

Let X be any set of numbers that satisfies each of the axioms P1 through P12 (X might be

the rational numbers, or the real numbers, or any number of other possibilities). Inside X

there is a copy of what we will think of as the “natural numbers”, namely

N = {1, 1 + 1, 1 + 1 + 1, . . .} or N = {1, 2, 3, . . .}.

(I’m going to assume that everyone is familiar with the standard naming convention of Arabic

numbers!) Notice that we have

1 < 1 + 1 < 1 + 1 + 1 < · · · or 1 < 2 < 3 < · · · ,

since 1 > 0, so adding one more “1” to a sum of a collection of 1’s increases the sum.

This definition of the natural numbers is somewhat informal (what exactly does that “. . .”

mean?), but it will work perfectly well for us while we introduce the most important property

of the natural numbers, the principle of mathematical induction. In this section we’ll discuss

induction first in this informal setting. We’ll then present a more formal definition of N, and

indicate how (in principle at least) we could establish all of N’s expected properties in this

formal setting.

4.1 The principle of mathematical induction (informally)

We have already encountered a number of situations in which we would like to be able to

prove that some predicate, that depends on a natural number n, is true for every n ∈ N.

Examples include:

• if a1, . . . , an are n arbitrary reals, then the sum a1 + a2 + · · ·+ an does not depend on

the order in which parentheses are put around the ai’s, and

• if a1, . . . , an are n arbitrary reals, then the sum of the ai’s does not depend on the order

in which the ai’s are arranged in the sum.

We know that we can, in principle, use the axioms of the real numbers to prove each of these

statements for any particular n, but it seems like this case-by-case approach would require

infinite time to prove either of the statements for every n.

There’s a fix. Let’s pick one of these predicates, call it p(n). Suppose we can prove

A that p(1) is true

and we can also give an argument that shows that

B for any arbitrary natural number n, p(n) implies p(n+ 1).

Armed with these two weapons, we have a convincing argument that p(n) is true for every n.

Indeed, if a friend were to challenge us to provide them with a proof of p(7), we would tell

them:
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• well, p(1) is true (that’s A), so

• since p(1) is true, and p(1) implies p(2) (that’s B, in the specific case n = 1), we

conclude via modus ponens that p(2) is true, so

• since p(2) is true, and p(2) implies p(3) (B for n = 2), modus ponens again tells us that

p(3) is true, so

• since p(3) is true, and p(3) implies p(4), p(4) is true, so

• since p(4) is true, and p(4) implies p(5), p(5) is true, so

• since p(5) is true, and p(5) implies p(6), p(6) is true, so

• since p(6) is true, and p(6) implies p(7), p(7) is true.

And if instead they challenged us to prove p(77), we would do the same thing, just with

many more lines. There’s a uniform proof of p(n) for any n — one that doesn’t require a

specific examination of p(n), but simply one appeal to A followed by n− 1 identical appeals

to B and modus ponens. Because of this uniformity, we can simply present A and B as a

proof of p(n) for all n. If our friend wants a specific proof of p(777) from this, they are free

to supply the 777 required steps themselves!

As long as A and B can both be given finite length proofs, this gives a finite length proof

of p(n) for infinitely many n. We summarize this:

The principle of mathematical induction: Let p(n) be a predicate, with the

universe of discourse for n being natural numbers. If p(1) is true, and if, for

arbitrary n, p(n) implies p(n+ 1), then p(n) is true for all n.

Some notation:

• a proof using the principle of mathematical induction is commonly called a proof by

induction;

• the step in which p(1) is verified is called the base case of the induction; and

• the step in which it is established that for arbitrary n, p(n) implies p(n + 1) (a step

which will almost always involve symbolic manipulations of expressions involving n,

where no specific properties of n are used), is called the induction step.

Here is a very tangible illustration of what’s going on with induction:

The principle of mathematical induction, ladder version: If you have a

way of getting on a ladder, and if you have a way of going from any rung of the

ladder to the next rung up, then you can get as high up the ladder as you wish.
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Proving identities via induction

Let’s have an example. What’s the sum of the first n natural numbers? Well:

• 1 = 1,

• 1 + 2 = 3,

• 1 + 2 + 3 = 6,

• 1 + 2 + 3 + 4 = 10,

• 1 + 2 + 3 + 4 + 5 = 15,

• 1 + 2 + 3 + 4 + 5 + 6 = 21,

• 1 + 2 + 3 + 4 + 5 + 6 + 7 = 28,

• 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 = 36,

• 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 = 45,

• 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 + 10 = 55.

A pattern seems to be emerging: it appears that 1 + 2 + . . .+ n = n(n+ 1)/2.

Claim 4.1. For every natural number n,

1 + 2 + 3 + . . .+ n =
n(n+ 1)

2
.

Proof: Let p(n) be the predicate

p(n) : “1 + 2 + 3 + . . .+ n =
n(n+ 1)

2
”

(where the universe of discourse for n is natural numbers). We prove that p(n) is true for all

n, by induction.

Base case: p(1) is the assertion that 1 = 1(2)/2, or 1 = 1, which is true.

Induction step: Let n be an arbitrary natural number. We want to establish the implication

p(n) implies p(n+ 1),

that is to say, we want the establish that this statement has truth value T . By definition of

implication, this is the same as showing that the statement

either (not p(n)) or p(n+ 1)(?)

has truth value T .
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If p(n) is false, then (not p(n)) is true, so (?) is indeed true. If p(n) is true, then (not

p(n)) is false, so to establish that (?) is true we need to show that p(n+ 1) is true. But, we

don’t have to start an argument establishing p(n + 1) from scratch — we are in the case

where p(n) is true, so we get to assume p(n) as part of our proof of p(n+ 1).

p(n+ 1) is the assertion

1 + 2 + 3 + · · ·+ n+ (n+ 1) =
(n+ 1)((n+ 1) + 1)

2

or

(1 + 2 + 3 + · · ·+ n) + (n+ 1) =
(n+ 1)((n+ 2)

2
.(??)

Since p(n) is being assumed to be true, we get the assume that

1 + 2 + 3 + · · ·+ n =
n(n+ 1)

2
,

and so (??) (the statement whose truth we are trying to establish) becomes

n(n+ 1)

2
+ (n+ 1) =

(n+ 1)(n+ 2)

2
.

Multiplying both sides by 2, and expanding out the terms, this becomes

n2 + n+ 2n+ 2 = n2 + 3n+ 2,

which is true.

We have established the truth of the implication “p(n) implies p(n+ 1)”, for arbitrary n,

and so we have showing that the induction step is valid.

Conclusion: By the principle of mathematical induction, p(n) is true for all natural numbers

n, that is,

1 + 2 + 3 + . . .+ n =
n(n+ 1)

2
.

�

Of course, this write-up was filled with overkill. In particular, in proving the truth of the

implication p ⇒ q we almost never explicitly write that if the premise p is false then the

implication is true; so it is very typical to start the induction step with “Assume p(n). We

try to deduce p(n + 1) from this.” Also, we very often don’t even explicitly introduce the

predicate p(n). Here is a more condensed write-up of the proof, that should act as template

for other proofs by induction.

Claim 4.2. For every natural number n,

1 + 2 + 3 + . . .+ n =
n(n+ 1)

2
.
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Proof: We proceed by induction on n.

Base case: The base case n = 1 is obvious.

Induction step: Let n be an arbitrary natural number. Assume

1 + 2 + 3 + . . .+ n =
n(n+ 1)

2
.

From this we get

1 + 2 + 3 + . . .+ n+ (n+ 1) = (1 + 2 + 3 + . . .+ n) + (n+ 1)

=
n(n+ 1)

2
+ n+ 1

=
n2 + n+ 2n+ 2

2

=
n2 + 3n+ 2

2

=
(n+ 1)(n+ 2)

2

=
(n+ 1)((n+ 1) + 1)

2
.

The equality of the first and last expressions in this chain is the case n+ 1 of the assertion,

so we have verified the induction step.57

By induction the assertion is true for all n. �

In proving an identity — an equality between two expressions, both depending on some

variable(s) — by induction, it is often very helpful to start with one side of the n+ 1 case of

the identity, and manipulate it via a sequence of equalities in a way that introduces one side

of the n case of the identity into the mix; this can then be replaced with the other side of

the n case, and then the whole thing might be massage-able into the other side of the n+ 1

identity. That’s exactly how we proceeded above.

Now is a good time to introduce summation notation. We write

n∑
k=1

ak

as shorthand for

a1 + a2 + a3 + · · ·+ ak−1 + ak.

k is called the index of summation, and the ak’s are the summands. For example, we have

7∑
k=1

k2 = 12 + 22 + 32 + 42 + 52 + 62 + 72,

57Notice that the induction step is presented here as a complete english-language paragraph, even though

it involves a lot of mathematics. Read it aloud!
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2∑
k=1

f(k) = f(1) + f(2)

and
n∑
k=1

1 = 1 + 1 + . . .+ 1 = n,

where there are n 1’s in the sum (so the summand doesn’t actually have to change as k

changes).

More generally
∑u

k=` ak means a` + a`+1 + · · ·+ au−1 + au, so

2∑
j=−3

2j =
1

8
+

1

4
+

1

2
+ 1 + 2 + 4.

If there happen to be no numbers in the range between ` and u inclusive, then the sum is

called empty, and by convention is declared to be 0, so, for example,

1∑
k=3

ak = 0

(starting from 3 and working upwards along the number line, no numbers between 3 and 1

are encountered).

If “
∑

” is replaced with “
∏

”, then we replace addition with multiplication, so

5∏
i=1

i = 1 · 2 · 3 · 4 · 5 = 120.

The empty product is by convention declared to be equal to 1.

In summation notation, the statement of Claim 4.2 is

n∑
k=1

k =
n(n+ 1)

2
.

There are similar formulas for the sums of the first n squares, cubes, et cetera. The following

are good exercises in proof by induction:

•
∑n

k=1 k
2 = n(n+1)(2n+1)

6
,

•
∑n

k=1 k
3 = n2(n+1)2

4
.

Recursively defined sequences

Hand-in-glove with proof by induction goes definition by recursion. A sequence of numbers

(a1, a2, a3, . . .) is defined recursively if

• the values of the ai for some small indices are specified, and
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• for all other indices i, a procedure is given for calculating ai, in terms of ai−1, ai−2, et

cetera.

Properties of sequences defined recursively are often proved by induction, as we will now see.

The most famous example of a recursively defined sequence is the Fibonacci numbers.

Define a sequence (f0, f1, f2, . . .) by58

• f0 = 0, f1 = 1 and

• for n ≥ 2, fn = fn−1 + fn−2.

The sequence begins (0, 1, 1, 2, 3, 5, 8, 13, 21, 34, . . .). Fibonacci numbers count many different

things, for example:

• fn+1 is the number of ways of tiling a 1 by n strip with 1 by 1 and 1 by 2 tiles;

• fn+1 is the number of hopscotch boards that can be made using n squares59;

• fn+1 in the number of ways of covering 2 by n strip with 2 by 1 dominoes;

• fn+2 is the number of words of length n that can be formed from the letters a and b, if

two a’s are not ever allowed to appear consecutively; and

• the Fibonacci numbers count the number of pairs of rabbit on an island after a certain

amount of time has passed, under some very contrived conditions.60

The Fibonacci numbers exhibit many nice patterns. For example, define sn to be the

sum of all the Fibonacci numbers up to and including fn, that is, sn = f0 + f1 + · · ·+ fn, or

sn =
∑n

k=0 fk. Here is a table of some values of sn, compared to fn:

n 0 1 2 3 3 5 6 7 8

fn 0 1 1 2 3 5 8 13 21

sn 0 1 2 4 7 12 20 33 54.

There seems to be a pattern: sn = fn+2 − 1. We can prove this by induction on n. The base

case n = 0 is clear, since s0 = 0 = 1− 1 = f2 − 1. For the induction step, suppose that for

some n ≥ 0 we have sn = fn+2 − 1. Then

sn+1 = sn + fn+1

= (fn+2 − 1) + fn+1 (inductive hypothesis)

= (fn+2 + fn+1)− 1

= fn+3 − 1 (recursive definition of Fibonacci numbers)

= f(n+1)+2 − 1,

58Notice that here I’m starting indexing at 0, rather than 1.
59See https://en.wikipedia.org/wiki/Hopscotch.
60The Fibonacci numbers are named for Leonardo of Pisa, nicknamed “Fibonacci”, who discussed them in

his book Liber Abaci in 1202, in the context of rabbits on an island. They had already been around for a

while, though, having been studied by the Indian mathematician Pingala as early as 200BC.
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so, by induction, the claimed identity is proven.

Other sum identities satisfied by the Fibonacci numbers include the following, that you

can try to prove by induction:

• (Sum of odd-indexed Fibonacci numbers)
∑n

k=0 f2k+1 = f2n+2;

• (Sum of even-indexed Fibonacci numbers)
∑n

k=0 f2k = f2n+1 − 1; and

• (Sum of squares of Fibonacci numbers)
∑n

k=0 f
2
k = fnfn+1 (hard!).

Many important mathematical operations are defined recursively. For example, although

it is tempting simply to define an, for real a and natural number n, by

“an = a · a · · · · · a”

where there are n a’s in the product on the right, this somewhat informal definition is an

awkward one to use when trying to establish basic properties of powers. If instead (as we do)

we define an recursively, via:

an =

{
a if n = 1

a · an−1 if n ≥ 2

then proving all the expected properties becomes a fairly straightforward exercise in induction.

For example, on the homework you will be asked to prove that for all natural numbers n,m,

it holds that an+m = (an)(am), and this should be done via induction.

We can also define a0 = 1 for all non-zero a. We do not define 0061.

Now that we’ve defined powers, it’s possible to present another application of induction,

the Bernoulli inequality. In the future (not this year) the content of the inequality will be

quite useful; right now, it’s just an example of an inequality proved inductively.

Claim 4.3. For all x ≥ −1 and all n ∈ N, (1 + x)n ≥ 1 + nx.

Proof: We proceed by induction on n. We could if we wished start the induction at n = 0,

where the assertion is that for all x ≥ −1, (1 + x)0 ≥ 1 + 0 · x. This seems true enough: it’s

“1 ≥ 1”. But, it’s not always that, because at x = −1 we are required to interpret 00, which

we have chosen not to do. So we’ll start our induction (as the claim suggests) at n = 1, where

the assertion is that for all x ≥ −1, (1 + x)1 ≥ 1 + 1 · x, or 1 + x ≥ 1 + x, which is true not

only for x ≥ −1 but for all x.

61A very strong case can be made for 00 = 1, because for natural numbers a and b, ab counts the number

of functions from a set of size b to a set of size a. When b = 0 and a 6= 0, there should be one function from

the empty set to a set of size a, namely the “empty function” that does nothing, and this agrees with a0 = 1

for a 6= 0; and when both a and b are 0, there is again one function from the empty set to itself, again the

empty function, justifying setting 00 to be 1. If none of this makes sense, that’s fine, as we haven’t yet said

what a function is. It might make more sense after we do.
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We now move on to the induction step. Assuming (1 + x)n ≥ 1 + nx holds for all x ≥ −1,

we consider how (1 + x)n+1 compares with 1 + (n+ 1)x for x ≥ −1. We have

(1 + x)n+1 = (1 + x)(1 + x)n by definition of powers

≥ (1 + x)(1 + nx) (by induction hypothesis)

= 1 + (n+ 1)x+ nx2 (by some algebra)

≥ 1 + (n+ 1)x (since nx2 ≥ 0).

This proves the validity of the induction step, and so the claim is proved by induction. �

But wait ... where did we use x ≥ −1 in the proof? The result is false without this

assumption — for example, if x = −4 and n = 3, then (1 + x)n = −27 while 1 + nx = −11,

so (1 + x)n < 1 + nx. I’ll leave it as an exercise to identify where the hypothesis got used.

4.2 A note on variants of induction

The principle of induction says that for p(n) a predicate, with the universe of

discourse for n being natural numbers, if p(1) is true, and if, for arbitrary n, p(n)

implies p(n+ 1), then p(n) is true for all n. There are numerous natural variants,

too numerous to possibly mention, and too similar to the basic principle for use

to need to mention. I’ll say a few here, so you can get the idea; looking at these

examples you should realize that induction can be quite flexible. In all cases, p(n)

is a predicate with universe of discourse for n being natural numbers.

• If, for some natural number k, p(k) is true, and if, for arbitrary n ≥ k, p(n)

implies p(n+ 1), then p(n) is true for all n ≥ k.

• If p(0) is true, and if, for arbitrary n ≥ 0, p(n) implies p(n+ 1), then p(n) is

true for all n ≥ 0.

• If p(−5) is true, and if, for arbitrary n ≥ −5, p(n) implies p(n + 1), then

p(n) is true for all n ≥ −5.

• If p(2) is true, and if, for arbitrary n ≥ 2, p(n) implies p(n+ 2), then p(n) is

true for all positive even numbers.

• · · · .

4.3 Binomial coefficients and the binomial theorem

We all know that (x+ y)2 expands out to x2 + 2xy + y2. What about (x+ y)3, (x+ y)4, et

cetera? Here is a table showing the various expansions of (x+ y)n for some small values of n.
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For completeness I’ve included n = 0 ((x+ y)0 = 1 as long as x+ y 6= 0) and (x+ y)1 = x+ y.

(x+ y)0 = 1

(x+ y)1 = x+ y

(x+ y)2 = x2 + 2xy + y2

(x+ y)3 = x3 + 3x2y + 3xy2 + y3

(x+ y)4 = x4 + 4x3y + 6x2y2 + 4xy3 + y4

(x+ y)5 = x5 + 5x4y + 10x3y2 + 10x2y3 + 5xy4 + y5

(x+ y)6 = x6 + 6x5y + 15x4y2 + 20x3y3 + 15x2y4 + 6xy5 + y6

· · · · · · .

There is a pattern here. Of course, (x+ y)n, when expanded out, has some xn terms, some

xn−1y terms, some xn−2y2 terms, and so on, down to some xyn−1 and some yn terms, but by

“a pattern” I mean a pattern in the coefficients of each of these terms. That pattern is best

spotted when the table is re-written as a triangle of coefficients, without the terms xnyn−k

that are just cluttering up the picture:

1

1 1

1 2 1

1 3 3 1

1 4 6 4 1

1 5 10 10 5 1

1 6 15 20 15 6 1.

Notice that there are 1’s down the outside, and all other numbers are obtained by summing

their neighbor above and to right and above and to the left. If this pattern were to continue,

the next row would be

1 7 21 35 35 21 7 1,

and sure enough, after a lot of computation, we discover that

(x+ y)7 = x7 + 7x6y + 21x5y2 + 35x4y3 + 35x3y4 + 21x2y5 + 7xy6 + y7.

We’ll prove, by induction, that this pattern holds for all n. But first we have to be a little

more precise about what the pattern is. Define the number “n!” (read this as “n factorial”)

recursively, via:

n! =


1 if n = 1

n · (n− 1)! if n ≥ 2

1 if n = 0.

So, informally, n! is the product of all the whole numbers from n down to 1:

• 3! = 3 · 2! = 3 · 2 · 1! = 3 · 2 · 1 = 6,
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• 5! = 5 · 4 · 3 · 2 · 1 = 120, et cetera.

We can interpret n! as the number of ways of arranging n objects in order — there are n

options for the first object; for each of those n options there are a further n− 1 options for

the second, so n · (n− 1) options for the first two objects; for each of those n(n− 1) options

there are a further n− 2 options for the third, so n(n− 1)(n− 2) options for the first three

objects, and so on down to n(n− 1)(n− 2) · · · 3 · 2 · 1 = n! options for ordering all n objects.

That 0! is defined to be “1” may seem a little strange, as it is hard to imagine counting

the number of ways of arranging 0 objects in order; but as we will see there are sound reasons

for this, and also it adheres to our convention that an empty product is 1 (the product of all

the numbers, starting at 0, and going down to 1, is empty).

Next define the expression “
(
n
k

)
”, (read this as “n choose k”) via(

n

k

)
=

n!

k!(n− k)!
.

Notice that because of the way we have defined the factorial function (never 0, and making

sense exactly for the natural numbers including 0) this expression is well-defined for all n ≥ 0,

and for all k satisfying 0 ≤ k ≤ n. That means we can form a triangle from the numbers
(
n
k

)
:(

0
0

)(
1
0

) (
1
1

)(
2
0

) (
2
1

) (
2
2

)(
3
0

) (
3
1

) (
3
2

) (
3
3

)(
4
0

) (
4
1

) (
4
2

) (
4
3

) (
4
4

)(
5
0

) (
5
1

) (
5
2

) (
5
3

) (
5
4

) (
5
5

)(
6
0

) (
6
1

) (
6
2

) (
6
3

) (
6
4

) (
6
5

) (
6
6

)
.

Calculating the numerical values, this triangle becomes:

1

1 1

1 2 1

1 3 3 1

1 4 6 4 1

1 5 10 10 5 1

1 6 15 20 15 6 1,

which looks just like the triangle of coefficients we got when we expanded out (x+ y)n.

In that case (coefficients in expansion of (x+ y)n) we suspected that each number in the

triangle, other than the 1’s on the outside, was obtained by summing its two neighbors above

it. In this case (triangle of
(
n
k

)
), we can easily prove this relation.

Claim 4.4. For n ≥ 0, and for 0 ≤ k ≤ n:
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• if k = 0 or if k = n then
(
n
k

)
= 1;

• otherwise, (
n

k

)
=

(
n− 1

k − 1

)
+

(
n− 1

k

)
.

Proof: If k = 0 then since 0! = 1, we have(
n

k

)
=

n!

0!(n− 0)!
=

n!

1 · n!
= 1,

and if n = k for a similar reason we have
(
n
k

)
= 1.62

Otherwise, we must have n ≥ 2 and 1 < k < n. We have(
n− 1

k − 1

)
+

(
n− 1

k

)
=

(n− 1)!

(k − 1)!((n− 1)− (k − 1))!
+

(n− 1)!

k!((n− 1)− k)!

=
(n− 1)!

(k − 1)!(n− k)!
+

(n− 1)!

k!(n− k − 1)!

=
(n− 1)!

(k − 1)!(n− k − 1)!

(
1

n− k
+

1

k

)
=

(n− 1)!

(k − 1)!(n− k − 1)!

(
k + (n− k)

(n− k)k

)
=

n!

k!(n− k)!

=

(
n

k

)
.

(Notice that all steps above involve expressions that make sense, because n ≥ 2 and 1 < k < n).

�

Just as there was a counting interpretation of n!, there’s a counting interpretation of
(
n
k

)
.

How many subsets of size k does a set of size n have? Well, we can select such a subset by

choosing a first element, then a second, et cetera, leading to a count of n·(n−1)·· · ··(n−k+1) =

n!/(n− k)!; but each particular subset has been counted many times. In fact, a particular

subset has been counted k! times, once for each of the k! ways in ways in which its k elements

can be arranged in order. So our count of n!/(n− k)! was off by a multiplicative factor of k!,

and the correct count is (n!/(n− k)!)/k!, which is exactly
(
n
k

)
. So:(

n
k

)
is the number of subsets of size k of a set of size n.

This allows a alternate proof of Claim 4.4. When k = n,
(
n
k

)
is the number of subsets of size

n of a set of size n, and this is clearly 1 (the set itself). When k = 0,
(
n
k

)
is the number of

subsets of size 0 of a set of size n, and this is also 1 (the empty set is a subset of any set, and

it is the only set with 0 elements). For n ≥ 2, and 1 < k < n, subsets of size k of a set X of

size n fall into two classes:
62This is a strong justification for declaring 0! = 1.
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• those that include a particular fixed element x — there are
(
n−1
k−1

)
of these, one for each

subset of X − {n} of size k − 1, and

• those that don’t include x — there are
(
n−1
k

)
of these, one for each subset of X − {n}

of size k.

So X has
(
n−1
k−1

)
+
(
n−1
k

)
subsets of size k; but it also (directly) has

(
n
k

)
subsets of size k; so(

n

k

)
=

(
n− 1

k − 1

)
+

(
n− 1

k

)
.

This identity is called Pascal’s identity63

We’re now ready to formalize a theorem that captures the pattern we were noticing with

(x+ y)n. It’s called the binomial theorem (because the expansion of (x+ y)n is a binomial

expansion — an expansion of an expression involving two (bi) named (nomial) things, x and

y), and the numbers
(
n
k

)
that come up in it are often called binomial coefficients.

Theorem 4.5. Except in the case when n = 0 and at least one of x, y, x + y = 0, for all

n ∈ N0 and for all real x, y,

(x+ y)n = xn +

(
n

1

)
xn−1y +

(
n

2

)
xn−2y2 + · · ·+

(
n

k

)
xn−kyk + · · ·+

(
n

n− 1

)
xyn−1 + yn,

or, more succinctly,

(x+ y)n =
n∑
k=0

(
n

k

)
xn−kyk.

Proof: When n = 0, as long as all of x, y, x+ y are non-zero both sides of the identity are 1,

so they are equal.

For n ≥ 1 we proceed by induction on n (with predicate:

p(n) : “for all real x, y, (x+ y)n =
n∑
k=0

(
n

k

)
xn−kyk”).

The base case p(1) asserts (x+ y)1 =
(

1
0

)
x+

(
1
1

)
y, or x+ y = x+ y, which is true for all real

x, y.

For the induction step, we assume that for some n ≥ 1 we have

(x+ y)n = xn +

(
n

1

)
xn−1y +

(
n

2

)
xn−2y2 + · · ·+

(
n

n− 2

)
x2yn−2 +

(
n

n− 1

)
xyn−1 + yn

for all real x, y. Multiplying both sides by x+ y, this yields

(x+y)n+1 = (x+y)

(
xn +

(
n

1

)
xn−1y +

(
n

2

)
xn−2y2 + · · ·+

(
n

n− 2

)
x2yn−2 +

(
n

n− 1

)
xyn−1 + yn

)
.

63It’s named for the French polymath Blaise Pascal. The triangle of values of
(
n
k

)
is called Pascal’s triangle,

and has many lovely properties. It is easily googled.
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Now the right-hand side above is

xn+1+(
n
1

)
xny +

(
n
2

)
xn−1y2 + · · ·+

(
n
n−2

)
x3yn−2 +

(
n
n−1

)
x2yn−1 + xyn+

xny +
(
n
1

)
xn−1y2 + · · ·+

(
n
n−3

)
x3yn−2 +

(
n
n−2

)
x2yn−1 +

(
n
n−1

)
xyn+

yn+1.

or
xn+1+(

n
1

)
xny +

(
n
2

)
xn−1y2 + · · ·+

(
n
n−2

)
x3yn−2 +

(
n
n−1

)
x2yn−1 +

(
n
n

)
xyn+(

n
0

)
xny +

(
n
1

)
xn−1y2 + · · ·+

(
n
n−3

)
x3yn−2 +

(
n
n−2

)
x2yn−1 +

(
n
n−1

)
xyn+

yn+1.

Applying Claim 4.4 to each pair of terms in matching columns in the second and third rows,

this becomes

xn+1+(
n+1

1

)
xny +

(
n+1

2

)
xn−1y2 + · · ·+

(
n
n−2

)
x3yn−2 +

(
n
n−1

)
x2yn−1 +

(
n+1
n

)
xyn+

yn+1

(for example,(
n

2

)
xn−1y2 +

(
n

1

)
xn−1y2 =

((
n

2

)
+

(
n

1

))
xn−1y2 =

(
n+ 1

2

)
xn−1y2)

Using
(
n+1

0

)
=
(
n+1
n+1

)
= 1, this last expression is exactly

n+1∑
k=0

(
n+ 1

k

)
x(n+1)−kyk.

So we have shown that (1 + x)n+1 =
∑n+1

k=0

(
n+1
k

)
x(n+1)−kyk for all real x, y, which is p(n+ 1).

The induction step is complete, as is the proof of the theorem. �
At the end of Spivak Chapter 2, there are plenty of exercises that explore the many

properties of the numbers
(
n
k

)
.

4.4 Complete, or strong, induction (informally)

Sometimes induction is not enough to verify a proposition that at first glance seems tailor-made

for induction. For example, consider the recursively defined sequence

an =


2 if n = 0

3 if n = 1

3an−1 − 2an−2 if n ≥ 2.

This table shows the first few values of an:

n 0 1 2 3 4 5 6 7

an 2 3 5 9 17 33 65 129.
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There seems to be a pattern: it seems that an = 2n + 1 for each n. If we try to prove this by

induction, though, we run into a number of problems. The base case n = 0 is evident. The

first problem arises when we think about the induction step: we assume, for some arbitrary

n ≥ 0, that an = 2n + 1, and try to deduce that an+1 = 2n+1 + 1.

Our inclination is to use the recursive definition an+1 = 3an − 2an−1. But already in

the very first instance of the induction step, we are stuck, because at n = 0 the recursive

definition we would like to use is a1 = 3a0 − 2a−1. This makes no sense (there is no a−1).

And indeed, it shouldn’t make sense, because the clause an = 3an−1 − 2an−2 of the definition

of an kicks in only when n ≥ 2. To say anything about a1, we have to appeal to a different

clause in the definition, namely a1 = 3. Since 3 = 21 + 1, this is still consistent with the

general pattern we are trying to prove.

One way to think of this is that we are verifying two base cases (n = 0 and a = 1) before

going on to the induction step; another way to think of it is that we are treating the induction

step “p(0)⇒ p(1)” as a special case, and showing that it is a true implication by showing

that both p(0) and p(1) are simply true, always, so the implication is true; the remainder

of the induction step, “p(n) ⇒ p(n + 1) for every n ≥ 1” will be dealt with in a different,

more general, way. However we choose to think of it, this issue arises frequently in proofs by

induction, especially when dealing with recursively defined sequences.

Having dealt with the first instance of the induction step, lets move on to the general

inductive step, p(n)⇒ p(n+ 1) for n ≥ 1. Here we can legitimately write an+1 = 3an− 2an−1,

because for n ≥ 1, this is the correct clause for defining an+1. We would like to say that

3an − 2an−1 = 2n+1 + 1,

using that an = 2n + 1. But we can’t: the best we can say is

3an − 2an−1 = 3(2n + 1)− 2an−1,

because in trying to verify p(n)⇒ p(n+ 1) we can assume nothing about p(n− 1).

There’s a fix: presumable, in getting this far in the induction, we have already established

not just p(n), but also p(n− 1), p(n− 2), p(n− 3), et cetera. If we have, then we can, as well

as using an = 2n + 1, use an−1 = 2n−1 + 1. Then we get

an+1 = 3an − 2an−1 = 3(2n + 1)− 2(2n−1 + 1) = 3 · 2n + 3− 2n − 2 = 2 · 2n + 1 = 2n+1 − 1,

as we need to show to establish p(n+ 1).

We can formalize this idea in the principle of complete induction, also called the principle

of strong induction:

The principle of complete mathematical induction: Let p(n) be a predicate,

with the universe of discourse for n being natural numbers. If p(1) is true, and if,

for arbitrary n, the conjunction of p(1), p(2), . . . , p(n) implies p(n+ 1), then p(n)

is true for all n.
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Going back through the discussion that we gave to justify the principle of induction, it

should be clear that complete or strong induction is an equally valid proof technique. We

can in fact argue that strong induction is exactly as strong as regular induction:

• Suppose that we have access to the principle of strong induction. Suppose that p(n) is

a predicate (with n a natural number) and that we know

– p(1) and

– for arbitrary n ≥ 1, p(n) implies p(n+ 1).

Then we also know p(1) ∧ p(2) ∧ · · · ∧ p(n) implies p(n + 1) (if we can infer p(n + 1)

from p(n), we can certainly infer it from p(1), p(2), . . . , p(n)!). So by strong induction,

we can conclude that p(n) is true for all n. In other words, if we have access to the

principle of strong induction, we also have access to the principle of induction.

• Suppose that we have access to the principle of induction. Suppose that p(n) is a

predicate (with n a natural number) and that we know

– p(1) and

– for arbitrary n ≥ 1, p(1) ∧ p(2) ∧ · · · ∧ p(n) implies p(n+ 1).

We would like to conclude that p(n) is true for all n; but we can’t simple say that p(n)

implies p(n+ 1), and use induction; we don’t know whether p(n) (on its own) implies

p(n+ 1). Here’s a fix: consider the predicate Q(n) define by

Q(n) : “p(1) ∧ p(2) ∧ · · · ∧ p(n).”

We know Q(1) (it’s just p(1). Suppose, for some arbitrary n, we know Q(n). Then

we know p(1) ∧ p(2) ∧ · · · ∧ p(n), and we can deduce p(n + 1). But, again since we

know p(1) ∧ p(2) ∧ · · · ∧ p(n), we can now deduce p(1) ∧ p(2) ∧ · · · ∧ p(n) ∧ p(n + 1),

that is, we can deduce Q(n + 1). So we can apply induction to Q to conclude Q(n)

for all n. But a consequence of this is that p(n) holds for all n (remember, Q(n) is

p(1) ∧ p(2) ∧ · · · ∧ p(n)). In other words, if we have access to the principle of induction,

we also have access to the principle of strong induction.

Here’s an important application of complete induction, from elementary number theory.

A natural number n ≥ 2 is said to be composite if there are natural numbers a and b, both at

least 2, such that ab = n. It is said to be prime if it is not composite. We can use strong

(complete) induction to show that every natural number n ≥ 2 can be written as a product

of prime numbers.64

64The fundamental theorem of arithmetic states that the prime factorization of any number is unique up

to the order in which the primes in the factorization are listed (note that this would not be true if 1 was

considered a prime number, for then 3.2.1 and 3.2.1.1.1 would be different prime factorizations of 6). The

fundamental theorem of arithmetic is also proven by induction, but takes a lot more work than the result we

are about to prove, establishing the existence of a prime factorization.
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Indeed, let p(n) be the predicate “n can be written as the product of prime numbers”.

We prove that p(n) is true for all n ≥ 2 by complete induction.

Base case n = 2: This is trivial since 2 is a prime number.

Inductive step: Suppose that for some n ≥ 3, we know that p(m) is True for all m in

the range 2 ≤ m ≤ n− 165. We consider two cases.

• Case 1: n is prime. In this case p(n) is trivial.

• Case 2: n is composite. In this case n = ab for some natural numbers a and b with

2 ≤ a ≤ n− 1 and 2 ≤ b ≤ n− 1. Since p(a) and p(b) are both true (by the complete

induction hypothesis) we have

a = p1p2 · · · pk
and

b = q1q2 · · · q`
where p1, p2, . . . , pk, q1, q2, . . . , q` are all prime numbers. But that implies that n can be

written as a product of prime numbers, via

n = ab = p1p2 · · · pkq1q2 · · · q`.

This shows that p(n) follows from p(2), p(3), . . . , p(n− 1).

By complete induction, we conclude that p(n) is true for all n ≥ 2.

Note that this proof would have gone exactly nowhere if all we were able to assume, when

trying to factorize n, was the existence of a factorization of n− 1.

We now give a more substantial example of complete induction. The associativity axiom

for multiplication says that for all reals a, b, c, we have a(bc) = (ab)c (note that I’m using

juxtaposition for multiplication here, as is conventional, rather than the “·” that I’ve been

using up to now). Presumably, there is an “associativity axiom” for the product of n things,

too, for all n ≥ 3 (we’ve already seen the version for n = 4). Let GAA(n) be the predicate “for

any set of n real numbers a1, . . . , an the order in which the product a1 · · · an is parenthesized

does not affect the final answer”, and let GAA be the generalized associativity axiom, that

is, the statement that GAA(n) holds for all n ≥ 166.

Claim 4.6. GAA is true.

Proof: Among all the ways of parenthesizing the product a1 · · · an we identify one special

one, the right-multiply:

R(a1, . . . , an) = (· · · (((a1a2)a3)a4) · · · )an.
65Note that when proving things by induction, you can either deduce p(n+ 1) from p(n), or deduce p(n)

from p(n − 1); similarly, when proving things by strong induction you can either deduce p(n + 1) from

p(1) ∧ · · · ∧ p(n), or deduce p(n) from p(1) ∧ · · · ∧ p(n− 1); it’s a matter of taste or convenience
66Really the result is only interesting for n ≥ 3, but it makes sense, and is true, for n = 1, 2 as well, so

we’ll throw those into the mix, too.
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We will prove, by strong induction on n, that for all n ≥ 1, the predicate “for any set of

n real numbers a1, . . . , an, all the ways of parenthesizing the product a1 · · · an lead to the

answer R(a1, . . . , an).” This will show that GAA is true.

The base case n = 1 is trivial — with only one number, there is one one possible product.

The same goes for the base case n = 2. The base case n = 3 is axiom P5.

For the inductive step, let n ≥ 4 be arbitrary, and suppose that the predicate we are

trying to prove (GAA(k)) is true for all values k of the variable between 1 and n− 1. Let P

be an arbitrary parenthesizing of the product a1 · · · an. P has a final, outer, product, the last

pair of numbers multiplied together before P is fully evaluated. We consider cases.

Case 1 The final product is of the form Aan. By induction (variable value n− 1) we have

A = R(a1, . . . , an−1), so

P = Aan = R(a1, . . . , an−1)an = R(a1, . . . , an).

Case 2 The final product is of the form AB where A is a parenthesizing of a1, . . . , ak and B

is a parenthesizing of ak+1, . . . , an, where 1 ≤ k ≤ n− 2. If k = n− 2 then we have

P = A(an−1an) = (Aan−1)an

(by P5), and we are back in case 1, so P = R(a1, . . . , an). If k ≤ n−3 then by induction

(variable value n− k) we have

B = R(ak+1 · · · an) = R(ak+1 · · · an−1)an

and so, once again by P5,

P = AB = A(R(ak+1 · · · an−1)an) = (AR(ak+1 · · · an−1))an,

and we are back in case 1, so P = R(a1, . . . , an).67

67Here’s an alternate way of presenting the two cases:

Case 1: P = (SOMETHING)an. By induction (GAA(n− 1)), this is the same as

P = R(a1, . . . , an−1)an = R(a1, . . . , an).

Case 2:

P = (SOMETHING)︸ ︷︷ ︸
involving x1, . . . , xk, 1 ≤ k ≤ n− 2

· (SOMETHING ELSE)︸ ︷︷ ︸
involving xk+1, . . . , xn

= R(a1, . . . , ak)︸ ︷︷ ︸
GAA(k)

R(ak+1, . . . , an)︸ ︷︷ ︸
GAA(n−k)

= R(a1, . . . , ak) · (R(ak+1, . . . , an−1) · an)

= (R(a1, . . . , ak)R(ak+1, . . . , an−1)·) · an (GAA(3))

= R(a1, . . . , an−1)an (GAA(n− 1))

= R(a1, . . . , an).
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In either case, P = R(a1, . . . , an), and so the claim is proven by (strong) induction. �

Notice that we needed the induction hypothesis for all values of the variable below n, so

we really needed strong induction.

Of course, there is also an analogous generalized associativity for addition. Strong

induction is in general a good way to extend arithmetic identities from a few terms to

arbitrarily many terms. You should do some of the following as exercises:

Generalized commutativity For n ≥ 2, for any set of n reals, the result of adding the n

reals does not depend on the order in which the numbers are written down; and the

same for multiplication.

Generalized distributivity For n ≥ 2, and for any set of real numbers a, b1, b2, . . . , bn,

a(b1 + · · · bn) = ab1 + · · · abn.

Generalized triangle inequality For n ≥ 2, and for any set of real numbers b1, b2, . . . , bn,

|b1 + . . . bn| ≤ |b1|+ · · ·+ |bn|.

Generalized Euclid’s rule For n ≥ 2, and for any set of real numbers b1, b2, . . . , bn, if

b1b2 · · · bn = 0 then at least one of b1, b2, . . . , bn must be 0.

4.5 The well-ordering principle (informal)

A set S has a least element if there is an element s in the set S with s ≤ s′ for every s′ ∈ S.

Not every set has a least element: there is no least positive number (for every positive number

p, p/2 is a smaller positive number), and there is no least negative number (for every negative

number q, q − 1 is a smaller negative number).

The set of natural numbers, on the other hand (at least as we have informally defined

it), has a least element element, namely 1. Moreover, it seems intuitively clear that every

subset of N has a least element; or rather, every non-empty subset of N has a least element

(the empty set has no least element). We formulate this as the well-ordering principle of the

natural numbers:

Claim 4.7. (The well-ordering principle of the natural numbers) If E is a non-empty subset

of the natural numbers, then E has a least element.

Proof: Suppose E is a subset of the natural numbers with no least element. We will show

that E is empty; this is the contrapositive of, and equivalent to, the claimed statement.

Let p(n) be the predicate “n 6∈ E”. We will show, by strong induction, that p(n) is true

for all n, which will show that E is empty.

The base case p(1) asserts 1 6∈ E, which is true; if 1 ∈ E then 1 would be the least element

in E.
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For the induction step, assume that p(1), . . . p(n − 1) are all true, for some arbitrary

natural number n ≥ 2. Then none of 1, 2, . . . , n− 1 are in E, so neither is n, since if n ∈ E
then would be the least element in E. So p(n) is true, assuming p(1), . . . p(n− 1) are all true,

and by strong induction p(n) is true for all n. �

As an application of well-ordering, we give an alternate proof of the irrationality of
√

2.

Suppose (for a contradiction)
√

2 is rational. Let E be set of all natural numbers x such

that x2 = 2y2 for some natural number y. Under the assumption that
√

2 is rational, E is

non-empty, and so by well-ordering it has a least element, a say, with a2 = 2b2 for some

natural number b.

Now it is an easy check that b < a < 2b (indeed, since a2 = 2b2 it follows that b2 < a2 < 4b2,

from which b < a < 2b, via a homework problem).

Set a′ = 2b− a and b′ = a− b. By the relations b < a < 2b, both natural numbers, and

since b < a we have a′ < a. But now note that

2(b′)2 = 2(a− b)2 = 2a2 − 4ab+ 2b2 = a2 − 4ab+ 4b2 = (2b− a)2 = (a′)2,

so a′ ∈ E, contradicting that a is smallest element of E.

We conclude that E ′ is empty, so
√

2 is irrational.

This lovely proof was discovered by Stanley Tennenbaum; here is a visual illustration

of it, that I have taken (and augmented) from https://divisbyzero.com/2009/10/06/

tennenbaums-proof-of-the-irrationality-of-the-square-root-of-2/.

A visual illustration of Tennenbaum’s proof of the irrationality of
√

2
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4.6 Inductive sets

The purpose of the rest of this section is to make the “. . .” in

N = {1, 1 + 1, 1 + 1 + 1, . . .},

and the principle of mathematical induction, a little more formal.

Say that a set S ⊆ X is inductive if it satisfies both of these properties:

1. 1 is in S and

2. k + 1 is in S whenever k is in S.

So, for example:

• X is inductive.

• The set of positive numbers in X is inductive.

• The set of positive numbers excluding 5 is not inductive; it fails the second condition,

since 4 is in S but not 5.

• The set of positive numbers, excluding 3/2 is not inductive; it fails the second condition,

since 1/2 is in S but not 3/2.

• The set of positive numbers that are at least 1, excluding 3/2 is inductive; the absence

of 3/2 is not an obstacle, since 1/2 is not in S, so the implication “If 1/2 is in S then

3/2 is in S” is true.

• The set of positive numbers that are greater than 1 is not inductive; it fails the first

condition.

• If S1 and S2 are two inductive sets, then the set of elements that are in both S1 and S2

is also inductive.

It feels like the set {1, 1 + 1, 1 + 1 + 1, . . .} should be in every inductive set, because 1 is

in every inductive set, so 1 + 1 is also, and so on. To formalize that “and so on”, we make

the following definition.

Definition 4.8. A number n is a natural number if it is in every inductive set. We denote

by N the set of all natural numbers.

So, for example, 1 is a natural number (because it is in every inductive set), and so is

1 + 1, and so is 1 + 1 + . . .+ 1 where there are 1876 1’s in the sum. More generally if k is

in N then k is in every inductive set, so (by definition of inductive sets) k + 1 is in every

inductive set, so k + 1 is in N. In other words, N is an inductive set itself.
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By its definition, N is contained in every inductive set. Moreover, it is the only inductive

set that is contained in every inductive set. To see this, consider an inductive set E that

is contained in every inductive set. Since N is inductive, we have that E is contained in N.

Suppose that E is not equal to N. Then there is some number k with k in N but k not in

E. But if k is in N then by the definition of N we have that k is E, since being in N means

being in every inductive set, including E. The contradiction — k is not in E and k is in E —

shows that E is not equal to N is False, and so we conclude E = N. We summarize what we

have just proven in a claim.

Claim 4.9. The natural numbers form an inductive set, and N is the unique minimal

inductive set — it is contained in every inductive set, and no other inductive set has this

property. In particular if E is a subset of N and E is inductive then E = N.

4.7 The principle of mathematical induction

Re-phrasing the last sentence of Claim 4.9 we obtain the important principle of mathematical

induction.

Theorem 4.10. Suppose that E is a set of natural numbers satisfying

1. 1 is in E and

2. k + 1 is in E whenever k is.

Then E = N.

There is no need for a proof of this — it really is just a direct re-phrasing of the last

sentence of Claim 4.9. To get a first hint of the power of Theorem 4.10 we use it to derive the

following result, which is precisely the form of induction that we are by now familiar with.

Theorem 4.11. Suppose that p(n) is a predicate (a statement that is either True or False,

depending on the value of n), where the universe of discourse for the variable n is all natural

numbers. If

• p(1) is true and

• p(k + 1) is true whenever p(k) is true

then p(n) is true for all n in N.

Proof: Let E be the set of all n for which p(n) is True. We immediate have that 1 is in E

and that k + 1 is in E whenever k is. That E = N, that is that p(n) is True for all n in N,

now follows from Theorem 4.10. �

Slightly informally Theorem 4.11 says that if p(n) is some proposition about natural

numbers, and if we can show that
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Base case p(1) is True and

Induction step for all n the truth of p(n) (the induction hypothesis) implies the truth

of p(n+ 1)

then we can conclude that p(n) is True for all natural numbers. The power here, that you

should see from some examples, is that the principle of mathematical induction allows us to

prove infinitely many things (p(1), p(2), p(3), et cetera), with only a finite amount of work

(proving p(1) and proving the single implication p(n)⇒ p(n+ 1), involving a variable).

More informally still, induction says (repeating a previous observation) that if you can

get onto the first rung of a ladder (p(1)), and you know how to climb from any one rung to

any other (p(n)⇒ p(n+ 1)), then you can climb as high up the ladder as you wish, by first

getting on the ladder and then moving up as many rungs as you wish, one rung at a time.

We’ve already seen many examples of induction at work, in the informal setting, and

of course all of those examples go through perfectly in the more formal setting we’ve given

here. We give a few more examples of induction at work now, mostly to establish some very

fundamental properties of the natural numbers, that will be useful later. You should get the

sense that every property of numbers that you are already familiar with can be established

formally in the context of the definition of natural numbers that we have given.

Claim 4.12. For all natural numbers n, n ≥ 1.

Proof: Let p(n) be the predicate “n ≥ 1”, where the universe of discourse for the variable n

is all natural numbers. We prove that p(n) is true for all n by induction.

Base case: p(1) is the assertion 1 ≥ 1, which is true.

Induction step: Assume that for some n, n ≥ 1. Then n+ 1 ≥ 1 + 1 ≥ 1 + 0 = 1. So

the truth of p(n) implies the truth of p(n+ 1).

By induction, p(n) is true for all n, that is, for all natural numbers n, n ≥ 1. �

Corollary 4.13. There is no natural number x with 0 < x < 1.

Proof: Such an x would be a natural number that does not satisfy x ≥ 1, contradicting Claim

4.12. �

Claim 4.14. For every natural number n other than 1, n− 1 is a natural number.

Proof: Let p(n) be the predicate “(n 6= 1) =⇒ (n−1 ∈ N)”. We prove (∀n)p(n) by induction

(with, as usual, the universe of discourse being N).

Base case: p(1) is the assertion (1 6= 1) =⇒ (1 − 1 ∈ N), which is true, since the

premise 1 6= 1 is false.

Induction step: Assume that for some n, (n 6= 1) =⇒ (n− 1 ∈ N). Then n+ 1 6= 1,

for if n+ 1 = 1 then n = 0, which is not a natural number. Also, (n+ 1)− 1 = n, which is a
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natural number. So both the premise and the hypothesis of p(n+ 1) is are true, so p(n+ 1)

is true

By induction, p(n) is true for all n, that is, for all natural numbers n, if n 6= 1 then

n− 1 ∈ N. �

Corollary 4.15. There is no natural number x with 1 < x < 2.

Proof: Such an x would be a natural number other than 1, so x− 1 ∈ N by Claim 4.14. But

0 < x− 1 < 1, contradicting Corollary 4.13. �

All of these results have been leading up to the following, an “obvious” statement that

requires a (somewhat sophisticated) proof. It captures in very concrete way that the natural

numbers are indeed a set of the form {1, 2, 3, . . .}.

Claim 4.16. For every natural number n, there is no natural number x with n < x < n+ 1.

Proof: We proceed by induction on n, with the base case n = 1 being Claim 4.15. For the

induction step, suppose that for some n there is no natural number x with n < x < n+ 1, but

there is a natural number y with n+ 1 < y < n+ 2. Since n 6= 0 we have y 6= 1 so y − 1 ∈ N,

and since n < y − 1 < n + 1 this contradicts the induction hypothesis. We conclude that

there is no such y, and so by induction the claim is true. �

4.8 The principle of complete, or strong, induction

Sometimes it is helpful in an induction argument to be able to assume not just p(n) when

trying to prove p(n+ 1), but instead to assume p(k) for all k ≤ n. Here are the two forms of

the method of strong or complete induction that this leads to.

Theorem 4.17. Suppose that E is a set of natural numbers satisfying

1. 1 is in E and

2. k + 1 is in E whenever every j with j ≤ k is.

Then E = N.

Theorem 4.18. Suppose that p(n) is a predicate with universe of discourse for n being all

natural numbers. If

• p(1) is True and

• p(k + 1) is True whenever p(j) is True for all j ≤ k

then p(n) is True for all n in N.
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As we have observed earlier, complete induction (Theorem 4.18) and ordinary induction

(Theorem 4.11) are equivalent, in the sense that any proof that can be carried out using one

can be transformed into a proof that use the other. We repeat the justification of this claim

here, in slightly different language.

Suppose we have a proof of the truth of some predicate p(n) for all natural numbers n,

that uses ordinary induction. Then the argument used to deduce the truth of p(k + 1) from

that of p(k), is exactly an argument that deduces the truth of p(k + 1) from the truth p(j)

for all j ≤ k (just one that never needs to use any of the hypotheses of the implication except

p(k)). So any prove using ordinary induction can be transformed into one using complete

induction, somewhat trivially.

On the other hand, suppose we have a proof of the truth of some predicate p(n) for all

natural numbers n, that uses complete induction. Let q(n) be the predicate “p(m) holds

for all m ≤ n”. If q(n) is True for all n then p(n) is True for all n, and vice-versa, so to

prove that p(n) is True for all n it is enough to show that q(n) is true for all n. This can

be proved by ordinary induction: q(1) is True because p(1) is True, and if we assume that

q(k) is True for some k ≥ 1 then we know p(j) for all j ≤ k, so we know p(k + 1) (by our

complete induction proof of p(n) for all n), so we know p(j) for all j ≤ k + 1 (here we need

that there are no natural numbers strictly between k and k + 1, which is Claim 4.16) so we

know q(k + 1), and now ordinary induction can be used to infer that q(n) is true for all n.

4.9 The well-ordering principle

A least element of a set S of numbers is an element x0 of S such that for all x ∈ S we have

x0 ≤ x. None of the set of all real numbers, or all rational numbers, or all positive numbers,

or all integers, has a least element. But it seems “obvious” that the set of natural numbers

has a least element, namely 1, and indeed it can be proven by induction that n ≥ 1 for

every natural number n. More generally, it should be equally obvious that every non-empty

subset of the natural numbers has a least element (the empty set does not have any elements,

so in particular does not have a least element). This “obvious” fact is hard to pin down

precisely, because there are so many subsets to consider. However, it is a true fact, called the

well-ordering principle.

Theorem 4.19. Every non-empty subset of the natural numbers has a least element.

Proof: We use the principle of complete induction. Let S be a subset of the natural numbers

with no least element, and let T be the complement of S (the set of all natural numbers not

in S).

We have that 1 ∈ T , because if 1 ∈ S then S would have a least element, namely 1.

Suppose, for some k ≥ 1, that for all j ≤ k we have j ∈ T . Then k + 1 is in T . Indeed,

suppose k + 1 is in S. Then k + 1 would be a least element of S, since no natural number j

with j ≤ k is in S, so if n is in S then n > k, so n ≥ k + 1 (this last by Claim 4.16).

By the principle of complete induction T = N and so S is empty.
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We have proven that a subset of N with no least element is empty, which is the contra-

positive of the assertion we wanted to prove. �

In the other direction, one can also prove the principle of complete induction using

the well-ordering principle, and so, remembering that ordinary and complete induction are

equivalent, we conclude that the three principles

the principle of mathematical induction

the principle of complete induction

the well-ordering principle

are equivalent (and all follow from the axioms of real numbers). We will use the three

interchangeably.

104


	Induction
	The principle of mathematical induction (informally)
	A note on variants of induction
	Binomial coefficients and the binomial theorem
	Complete, or strong, induction (informally)
	The well-ordering principle (informal)
	Inductive sets
	The principle of mathematical induction
	The principle of complete, or strong, induction
	The well-ordering principle


