
5 Functions

5.1 An informal definition of a function

Informally a function is a rule that assigns, to each of a set of possible inputs, an unambiguous

output. Two running examples we’ll use are:

Example 1 Given a real number, square it and subtract 1, and

Example 2 Add 1 to the input, subtract 1 from the input, multiply the two answers to get

the output.

In Example 1, the input 7 leads unambiguously to the output 48, as does the input −7

(there’s no rule that says that different inputs must lead to different outputs). In Example

2, the input 3 leads unambiguously to the output (3 + 1)(3− 1) or 8.

Functions can be much more complex than this; for example we might input a natural

number n, and output the nth digit after the decimal point of π, if that digit happens to

be odd; and output the n digit after the decimal point of
√
n otherwise. It’s not easy to

calculate specific values of this function, but you will agree that it is unambiguous68.

As an69 example of an ambiguous function, consider the rule “for input a positive number

x, output that number y such that y2 = x”. What is the output associated with input 4?

We have no way of knowing from the rule whether it is intended to be +2 or −2, so this rule

doesn’t define a function.

Every function has a

• Domain: the set of all possible inputs,

and a

• Range: the set of all outputs, as the inputs run over the whole domain.

For Example 1 the domain is the set of all real numbers. The range is less obvious, but

it shouldn’t be too surprising to learn that it is the set of all reals that are at least −1, or

{x : x ≥ −1}.
For Example 2 the domain is unclear. But we have the following universally agreed upon

Convention: If the domain of a function of real numbers is not specified, then

the domain is taken to be the largest set of reals for which the rule makes sense

(i.e., does not involve dividing by zero, taking the square roof of a negative number,

or evaluating 00); this set is called the natural domain of the function.

68Or is it?
69Possible “another”; see footnote above!
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Based on this convention, the domain for Example 2 is the set of all real numbers. The

range is again {x : x ≥ −1}.
In general it is pretty easy to determine the natural domain of a function — just throw

out from the reals all values where the rule define the function leads to problems — but

usually the range is far from obvious. For example, it’s pretty clear that the rule that sends

x to (x2 + 1)/(x2 − 1) (call this Example 3) has domain R− {−1, 1}, but there is no clear

reason why its range is (−∞,−1] ∪ (1,∞).

This last example, by the way, makes it clear that we need some better notation for

functions than “the rule that ...”. If we have a compact, easily expressible rule that determines

a function, and we know the domain X and range Y of the function, there is a standard

convention for expressing the function, namely

f : X → Y

x 7→ whatever expression describes the rule in question.

For Example 1 we might write

f : R→ [−1,∞)

x 7→ x2 − 1.

When using this notation, we will also use “f(x)” to indicate the output associated with

input x, so f(7) = 48 and f(−1) = 0. But of course we can also do this for generic input x,

and write f(x) = x2 − 1; and since this is enough to completely specify what the function

does on every possible input, we will often present an expression like this as the definition of

the particular function f .

This convention is particularly convenient when we are not specifying the domain of the

function we are working with, but instead taking it to have its natural domain. So we might

completely specify Example 3 by writing

“the function r̃7(x) = (x2 + 1)/(x2 − 1)”.

That fully pins down the function, since we can (easily) compute the domain and (with

difficulty) compute the range. (I’m deliberately using a wacky name here, r̃7 rather than the

more conventional f , or g, or h, to highlight that the name of a function can be anything).

A problem with the above notation is that it involves knowing the range, which is often

very difficult to compute. We get over this by introducing the notion of

• Codomain: any set that includes the set of all possible outputs, but is not necessarily

equal to the set of all possible outputs.

We then extend the notation above: if we know the domain X of a function, and also know a

codomain Y , we can write

f : X → Y

x 7→ whatever expression describes the rule in question.
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So Example 2 could be written as

f : R→ R
x 7→ (x+ 1)(x− 1).

(Notice that when working with real numbers, we can always resort to a worst-case scenario

and take all of R as a codomain).

Often the rule that defines a function is best expressed in pieces, as in

f(x) =

{
0 if x < 0

x2 if x ≥ 0.

We’ve seen this before, for example with the absolute value function.

5.2 The formal definition of a function

Going back to Example 1 and Example 2, we might ask, are they different functions?

Given our informal definition, the answer has to be “yes”. The two rules — “square and

subtract 1”, and “add 1, subtract 1, multiply results” — are different rules. But we really

would like the two examples to lead to the same function — they both have the same domains,

and, because x2 − 1 = (x+ 1)(x− 1) for all reals, for any given input each function has the

same output.

This highlights one shortcoming of the informal definition we’ve given of a function.

Another shortcoming is that it is simply too vague; what exactly do we mean by a “rule”?

And without a precise formation of what is and isn’t a rule, can we do any mathematics with

functions?

We now give the formal definition of a function, which is motivated by the fact that all

that’s needed to specify a function is the information of what the possible inputs are, and

what output is (unambiguously) associated with each input.

• A function is a set of ordered pairs (pairs of the form (a, b), where the order in which

a and b are written down matters), with the property that each a which appears as the

first co-ordinate of a pair in the set, appears as the first co-ordinate of exactly one pair.

Think of a as a possible input, and b as the associated output. The last part of the definition

is what specifies that to each possible input there is an unambiguous assignment of output.

As an example, the function whose domain is all integers between −2 and 2 inclusive,

and which is informally described by the rule “square the input”, would formally be

f = {(−2, 4), (−1, 1), (0, 0), (1, 1), (2, 4)}.

We write “f(−1) = 1” as shorthand for (−1, 1) ∈ f ((−1, 1) is one of the pairs that makes

up f). With this formal definition, the functions in Example 1 and Example 2 become

the same function, because the sets of pairs (a, b) in both functions is the same.

In the context of this formal definition, we can now formally define domain, range and

codomain.
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• The domain of a function f , written Domain(f), is the set of all first co-ordinates of

pair in the function;

• the range of f , written Range(f), is the set of all second co-ordinates of pair in the

function; and

• a (not “the” — it’s not unique) codomain of f is any set that contains the range as a

subset.

Notice that although you have probably long been used to using the notation “f(x)” as the

name for a generic function, with this formal definition it ok (and in fact more correct) to

just use “f”. A function is a set of pairs, and the name we use for the set (a.k.a. the name

for the function) doesn’t need to, and indeed shouldn’t, use a variable. The expression “f(x)”

should be understood not as a stand-in for the function, but (informally) as the output of the

function when the input is x and (formally) the second co-ordinate of that pair in f whose

first co-ordinate is x, if there is such a pair.

Having said that, in the future we will frequently use informality like “the function

f(x) = 3x− 2” to specify a function, rather than the formal but more cumbersome

f = {(x, 3x− 2) : x ∈ R}.

5.3 Combining functions

If f , g, h, et cetera, are all real functions (meaning: functions whose domains and ranges are

all subsets of the real numbers), we can combine them to form other functions.

Addition and subtraction Informally the function f+g is specified by the rule (f+g)(x) =

f(x) + g(x). Of course, this only makes sense for those x for which both f(x) and g(x)

make sense; that is, for those x which are in both the domain of f and the domain of g.

Formally we define

f + g = {(a, b+ c) : (a, b) ∈ f, (a, c) ∈ g},

and observe that

Domain(f + g) = Domain(f) ∩Domain(g).

Notice that f + g really is a function. It’s a set of ordered pairs certainly. And suppose

that a is a first co-ordinate of some pair (a, d) in f + g. It’s in the set because there a b

with (a, b) ∈ f and a c with (a, c) in g; but by the definition of function (applied to f

and g) we know that b and c are unique, so d can only be b+ c.

Informally f − g is defined by (f − g)(x) = f(x)− g(x). You should furnish the formal

definition for yourself as an exercise, verify that f − g is indeed a function, and verify

that Domain(f − g) = Domain(f) ∩Domain(g) (so is the same as Domain(f + g)).
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Notice that just like ordinary addition, addition of functions is commutative. This

follows quickly from the commutativity of ordinary addition. We give the proof of this

fact here; take it as a template for other, similarly straightforward facts that will be

left as exercises.

Claim 5.1. For any two real functions f and g, f + g = g + f .

Proof: Suppose (a, d) ∈ f + g. That means there is a unique real b and a unique real

c such that (a, b) ∈ f , (a, c) ∈ g, and d = b+ c. But by commutativity of addition, we

have d = c+ b. This says that (a, d) ∈ g + f .

By the same reasoning, if (a, d) ∈ g + f then (a, d) ∈ f + g. So as sets of ordered pairs,

f + g = g + f .

As a first exercise in similar manipulations, you should verify also that addition of real

functions is associative.

Multiplication and division The product of two functions f, g is defined informally by

(fg)(x) = f(x)g(x), and formally by

fg = {(a, bc) : (a, b) ∈ f, (a, c) ∈ g}.

As with addition, Domain(fg) = Domain(f) ∩ Domain(g), and multiplication is

commutative and associative. Moreover multiplication distributes across addition:

f(g + h) = fg + fh.

We can also define the product of a function with a real number. If f is a function and

c is a real number then cf is defined informally by (cf)(x) = c(f(x)), and formally by

cf = {(a, cb) : (a, b) ∈ f}.

(Notice that we never write fc — it’s conventional to put the constant in front of the

function name).

We can define −f to mean (−1)f (and easily check that this creates no clash with the

previous use of “−” in the context of functions — f + (−g) = f − g).

Division of a function f by a function g is defined informally by (f/g)(x) = f(x)/g(x),

and formally by

f/g = {(a, b/c) : (a, b) ∈ f, (a, c) ∈ g}.

We have to be a little careful about the domain of f/g, as we not only have to consider

whether f and g make sense at possible input x, but also whether the expression f/g

makes sense (i.e., we have to make sure that we are not dividing by 0). We have

Domain(f/g) = (Domain(f) ∩Domain(g))− {x : (x, 0) ∈ g},

that is, the domain of f/g is all things in the domain of both f and g, other than those

things which get send to 0 by g.
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Rational functions Two very important special functions are the

• constant function: f(x) = 1 for all x, formally {(x, 1) : x ∈ R},

and the

• linear function: f(x) = x for all x, formally {(x, x) : x ∈ R},

both with domains all of R.

Combining these two functions with repeated applications of addition, multiplication

and multiplication by constants, we can form the family of

• polynomial functions: functions of the form f(x) = anx
n + an−1x

n−1 + · · · +
a1x+a+ 0, where a0, . . . , an−1 are all real constants, and an is a non-zero constant.

Such a polynomial is said to have degree n, and the numbers a0, a1, . . . , an are said to

be the coefficients of the polynomial. We will see a lot more of polynomials as the

course progresses; for now we will just say that the domain of any polynomial all of R.

Combining polynomial functions with division, we can form the family of

• rational functions: functions of the form f(x) = P (x)/Q(x), where P and Q

are polynomials, and Q is not the identically (or constantly) 0 function, {(x, 0) :

x ∈ R}.

The domain of a rational function P/Q is R minus all those places where Q is 0.

In the discussion above we’ve talked about the domains of the functions we have been

building. In general it is very difficult to pin down ranges of functions. In fact, it’s a theorem70

that if the degree of a polynomial is an even number six or greater, and the coefficients of

the polynomial are rational numbers, it is in general not possible to express the range of

the polynomial using rational numbers together with addition, subtraction, multiplication,

division and taking nth roots; and for a rational function P/Q, if the degree of Q is five or

greater, it is in general not even possible to express the domain of the function succinctly!

We know that there are many more functions beyond polynomials and rational functions.

Familiar examples include
√
·, sin, log, and exp. These will be introduced formally as we go

on. For now, we’ll use them for examples, but won’t use them in the proofs of any theorems.

5.4 Composition of functions

There’s one more very important way of building new functions from old: composition.

Informally, giving two functions f and g, the composition f(g(x)) means exactly what it says:

70A quite difficult one, using something called Galois theory.
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first apply g to x, and then apply f to the result. As an example, suppose f(x) = sinx and

g(x) = x2 + 1. Then the composition would be f(g(x)) = sin(x2 + 1).

Notice that unlike previous ways of combining functions,

composition is not commutative!!!.

Indeed, if you are familiar with the sin function then you will know that in the example above,

since g(f(x)) = (sinx)2+1 and this is definitely a different function from f(g(x)) = sin(x2+1),

we have an example already of a pair of function f, g for which f(g(x)) 6= g(f(x)), in general.

For a more prosaic example, consider a(x) = x2 and b(x) = x+ 1; we have

a(b(x)) = (x+ 1)2 = x2 + 2x+ 1 6= x2 + 1 = b(a(x)),

then inequality in the middle being witnessed by any x other than x = 0.

Because composition is not commutative, we have to be very careful with the informal

language we use to describe composition. By convention, “f composed with g (applied to

x)” means “f(g(x))”. Notice that in this convention there is an inherent order among the

functions: “f composed with g” means something quite different from “g composed with

f”. It is sometimes tempting to use language like “the composition of f and g”, but this is

ambiguous, and should be avoided!.

Along with the language “f composed with g”, it’s also common to see “f of g” and “f

after g”. Both of these last two an inherent order, and the last is particularly suggestive: if f

is after g, then the action of g gets performed first.

What is the domain of the composition of f with g? The composed function makes sense

exactly for those elements of the domain of g, for which the outputs of g are themselves

in the domain of f . Consider, for example, the function given by the rule that x maps to√
(x+ 1)/(x− 1). This is the composition of the square root function (call it sq), with the

function (call it f) that maps x to (x+ 1)/(x− 1). Now the domain of f is all reals except 1;

but since the domain of sq is non-negative numbers, the domain of the composition is exactly

those real x that are not 1, and that have (x + 1)/(x − 1) ≥ 0. It’s an easy exercise that

(x+ 1)/(x− 1) ≥ 0 precisely when either x ≤ −1 or x > 1; so the domain of the composition

is {x : x ≤ −1 or x > 1}, which we can also write as (−∞,−1] ∪ (1,∞).

Formally, we use the notation “◦” (read “composed with”, “after”) to indicate composition:

f ◦ g = {(a, c) : (a, b) ∈ g for some b, (b, c) ∈ f}

Although composition is not commutative, it is associative; proving this is just a matter of

unpacking the definition:

• (f ◦ (g ◦ h))(x) = f((g ◦ h)(x)) = f(g(h(x)))

while

• ((f ◦ g) ◦ h)(x) = (f ◦ g)(h(x)) = f(g(h(x)))
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so indeed (f ◦ (g ◦ h))(x) = ((f ◦ g) ◦ h)(x) for every x. To finish we just need to check that

the domains of f ◦ (g ◦ h) and (f ◦ g) ◦ h are the same; but it’s easy to check that x is in the

domain of f ◦ (g ◦ h) exactly when

• x is in the domain of h,

• h(x) is in the domain of g, and

• g(h(x)) is in the domain of f ,

and these are also exactly the conditions under which x is in the domain of (f ◦ g) ◦ h.

5.5 Graphs

Note: I haven’t included any pictures in my first pass through this section. I strongly

encourage you to read this section with desmos open on a browser, so that you can create

pictures as you go along. Spivak (Chapter 4) covers the same material, and has plenty of

pictures.

In this section we talk about representing functions as graphs. It’s important to point

out from the start, though, that a graphical representation of a function should only ever

be used as an aid to thinking about a function, and to provide intuition; considerations of

graphs should never serve as part of a proof. The example of f(x) = sin(1/x) below gives an

illustration of why not, as does the graph of Dirichlet’s function (again, see below).

To start thinking about graphs, first recall the real number line, a graphical illustration

of the real numbers. The line is usually drawn horizontally, with an arbitrary spot marked in

the center representing 0, and an arbitrary spot marked to the right of 0, representing 1. This

two marks define a unit distance — the length of the line segment joining them. Relative to

this unit distance, the positive number x is represented by the spot a distance x to the right

of 0, while the negative number x′ is represented by the spot a distance x′ to the left of 0. In

this way all real numbers are represented by exactly on point on the number line (assuming

the line is extended arbitrarily far in each direction), and the relation “a < b” translates to

“a is to the left of b” on the line.

Recall that after introducing the absolute value function, we commented that the (positive)

number |a− b| encodes a notion of the “distance” between a and b. This interpretation of

absolute value makes it quite easy to represent on the number line solutions to inequalities

involving absolute value. For example:

• the set of x satisfying |x − 7| < 3 is the set of x whose distance from 7 is at most 3;

that is, the set of x which on the number line are no more than (and not exactly) 3

units above 7 and no less than (and not exactly) 3 units below 7; that is, the open

interval of numbers between 7− 3 and 7 + 3 (“open” meaning that the end-points are

not in the interval); that is, the interval (4, 10); and, more generally
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• for fixed real x0 and fixed δ > 0, {x : |x− x0| < δ} = (x0 − δ, x0 + δ).

This general example will play a major role in the most important definition of the semester,

the definition of a limit (coming up soon).

Now we move on to graphing functions. The coordinate plane consists of two copies of

the number line, called axes (singular: axis), perpendicular to each other, with the point of

intersection of the lines (the origin of the plane) being the 0 point for both axes. Traditionally

one of the axes is horizontal (the “x-axis”), with the right-hand direction being positive,

and the other is vertical (the “y-axis”), with the upward direction being positive. It’s also

traditional for the location of 1 on the x-axis to be the same distance from the origin as the

distance from 1 to the origin along the y-axis.

A point on the co-ordinate plane represents an ordered pair of numbers (a, b), with a (the

“x-coordinate”) being the perpendicular distance from the point to the y-axis, and b (the

“y-coordinate”) being the perpendicular distance from the point to the x-axis. In the other

direction, each ordered pair (a, b) has associated with a unique point in the coordinate plane:

to get to that point from the origin, travel a units along the x-axis (so to the right if a is

positive, and to the left if a is negative), and then travel b units in a direction parallel to the

y-axis (so up if b is positive, and down if b is negative).

(Some notation:

• the first quadrant of the coordinate plane is the top right sector consisting of points

(a, b) with a, b positive;

• the second quadrant is the top left sector consisting of points (a, b) with a negative, b

positive;

• the third quadrant is the bottom left sector consisting of points (a, b) with a, b negative;

and

• the fourth quadrant is the bottom right sector consisting of points (a, b) with a positive,

b negative.)

Since functions are (formally) nothing more or less than ordered pairs of numbers, the

coordinate plane should be an ideal tool for representing them. Formally, the graph of a

function is precisely the set of points on the coordinate plane that represent the pairs that

make up the function. Informally, we think of the graph as encode the output for every input

— to see the output associated with input x, travel x units along the x-axis, then move parallel

to the y-axis until the graph is hit. Notice:

• if the graph is not hit by the line parallel to the y-axis, that passes through the point

at distance x from the origin along the x-axis, then we can conclude that x is not in

the domain of the function;
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• the line parallel to the y-axis may need to be scanned in both directions (up and down)

to find the graph; if one has to scan up, then the function is positive at x, and if one

has to scan down, then it’s negative at x; and

• if the line parallel to the y-axis hits the graph, it must hit it at a single point; otherwise

the output of the function at input x is ambiguous. This leads to the

– Vertical line test: A collection of points in the coordinate plane is the graph of

a function, if and only if every vertical line in the plane (line parallel to the y-axis)

meets the collection of points at most once.

A graph can only provide an imperfect representation of a function of the reals, at least if

the function has infinitely many points in its domain, because we can only every plot finitely

many points. Even the slickest computer, that renders lovely smooth images of graphs, is

only actually displaying finitely many points — after all, there are only finitely many pixels

on a screen. Except for the very simplest of graphs (e.g. straight line graphs) the best we

can ever do is to plot a bunch of points, and make our best guess as to how to interpolate

between the points. We can never be certain, just from looking at the graph, that weird

things don’t in fact happen in the places where we have interpolated. This is the main reason

why we won’t use graphs to reason about functions (but as we’ll see in a while, there are

other reasons).

Nonetheless, it behooves us to be familiar with the graphs of at least some of the very

basic functions, and how these graphs change as the function changes slightly. The best way

to become familiar with the shapes of graphs, is to draw lots of them.

The tool that I recommend for drawing graphs is desmos.com. After you hit “Start

Graphing”, you can enter a function in the box on the left, in the form

“f(x) = something to do with x′′

(e.g., f(x) = x2 − 3
√
x). The graph of the function (or at least, a good approximation to it)

will appear on the right, where you can zoom in or out, and/or move to different parts of

the graph. You can enter multiple functions (just give then different names), and they will

helpfully appear in different colors (the color of the graph on the right matching the color

of the text specifying the function on the left). This allows you to compare the graphs of

different functions.

You can enter variables into the specification of a function, and you be able to create a

“slider” that lets you change the specific value assigned to the variable. For example, entering

“f(x) = ax2 + bx+ c” and creating sliders for each of a, b, c, allows you to explore how the

graph of the general quadratic equation changes as the coefficients change.

In these notes, I won’t go over all the graphs that might be of interest to us, and laboriously

describe their properties. That would be pointless, mainly because (at the risk of beating a

dead horse) we will never use our understanding of a graph to prove something; we will only

use it to aid intuition. Instead, I invite you to go to desmos.com, and explore these families,
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discovering their properties for yourself. I’ll provide a list of suggested functions, and leading

questions (with some answers):

• The constant function, f(x) = c for real c. What happens to the graph as c changes?

• The linear function through the origin, f(x) = mx for real m. What happens to the

graph as m changes? What’s the difference between positive m and negative m? Do all

straight lines through the origin occur, as m varies over the reals? (The answer to this

last question is “no”. Think about the vertical line test).

• The linear function, f(x) = mx + c for real m, c. What happens to the graph as c

changes?

Evidently, the graphs of the linear functions are straight lines. The number m is the

slope of the line. It measures the ratio of the change in the y-coordinate brought about

by change in the x-coordinate: if x is changed to x+ ∆x (change ∆x) then the output

changes from mx to m(x+∆x) for change m∆x, leading to ratio m∆x/∆x = m. Notice

that this is independent of x — the linear functions are the only functions with this

property, that the ration of the change in the y-coordinate to change in x-coordinate is

independent of the particular x that one is at.

This leads to an easy way to calculate the slope of a line, given two points (x0, y0)

and (x1, y1) on the line: just calculate the ratio of change in y-coordinate to change in

x-coordinate as one moves between these points, to get

m =
y1 − y0

x1 − x0

.

And it also gives an easy way to calculate the precise equation of a line, given two

(different) points (x0, y0) and (x1, y1): since the slope is independent of the x-value,

consider a generic point (x, f(x)) on the line, and equate the calculations of the slope

using the pair (x, f(x)), (x0, y0) and the pair (x, f(x)), (x1, y1), to get

f(x)− y0

x− x0

=
f(x)− y1

x− x1

,

then solve for f(x).

• The quadratic function, f(x) = ax2 + bx+ c for real a, b, c. What is the general shape

of the graph? What happens to the graph as a, b, c change? In particular, how does

the sign of a (whether it is positive or negative) affect the shape?

The shape of the graph of a quadratic function is referred to as a parabola. Parabolas

have very clean geometric interpretations:

– a parabola is the set of points in the coordinate plane that are equidistant from a

fixed line and a fixed point.
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We illustrate by considering the horizontal line f(x) = r, and the point (s, t), where

we’ll assume t 6= r. The (perpendicular, shortest) distance from a point (x, y) to the

line f(x) = r is |y − r|, and the (straight line) distance from (x, y) to (s, t) is, by the

Pythagorean theorem √
(x− s)2 + (y − t)2.71

So the points (x, y) that are equidistant from the line and the point are exactly those

that satisfy

|y − r| =
√

(x− s)2 + (y − t)2

which, because both sides are positive, is equivalent to

(y − r)2 = (x− s)2 + (y − t)2

or

y =
x2

2(t− r)
− sx

(t− r)
+
s2 + t2 − r2

2(t− r)
,

so the graph of the set of points is the graph of a specific quadratic equation.

Of course, there are far more parabolas than graphs of quadratic equations: by drawing

some lines and points in the plane, and roughly sketching the associated parabolas, you

will quickly see that a parabola is only the graph of a quadratic (that is, only passes

the vertical line test) if the line happens to be parallel to the x-axis.

• The general polynomial, f(x) = anx
n + an−1x

n−1 + · · ·+ a1x+ a0 for real ai’s, an 6= 0.

What is the general shape? In particular, what happens to the graph for very large x

71Why is this a reasonable formula for the straight-line distance between (x, y) to (s, t)? This dis-

tance formula comes quickly from the Pythagorean theorem, which says that if the hypotenuse of a right-

angled triangle has length c, and the other two side lengths are a and b, then a2 + b2 = c2. But why

is this true? There are many proofs, going back to Euclid, about 300BC. My favorite proof is conveyed

succinctly in the following picture (taken from https://math.stackexchange.com/questions/563359/

is-there-a-dissection-proof-of-the-pythagorean-theorem-for-tetrahedra):

The area of the big square is (a + b)2; but it is also c2 + 4((1/2)ab). So (a + b)2 = c2 + 4((1/2)ab), or

a2 + b2 = c2.
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and very small x (i.e., very large negative x), and how does that depend on n and an?

How many “turns” does the graph have, and how does change as n changes?

We will be able to answer these questions fairly precisely, once we have developed the

notion of the derivative.

More generally one may ask,

• How does the graph of f(cx) related to the graph of f(x), for constant c? What’s the

different between positive and negative c here?

• What about the graph of cf(x)?

• and f(x+ c)?

• and f(x) + c?

and one may explore the answers to these questions by plotting various graphs, and seeing

what happens as the various changes are made.

One important graph that is not the graph of a function is that of a circle. Geometrically,

a circle is the set of all points at a fixed distance r (the radius) from a given point (a, b) (the

center), and algebraically the circle is set of all points (x, y) in the coordinate plane satisfying

(x− a)2 + (y − b)2 = r2

(using the Pythagorean theorem to compute distance between two points). A circle that will

be of special interest to us is the unit circle centered at the origin, given algebraically by

x2 + y2 = 1.

The circle is not the graph of a function, because it fails the vertical line test. A circle can be

represented as the union of two functions, namely

f(x) =
√
r2 − (x− a)2 + b, x ∈ [a− r, a+ r]

and

f(x) = −
√
r2 − (x− a)2 + b, x ∈ [a− r, a+ r].

Related to the circle is the ellipse, a “squashed” circle, which geometrically is the set of

all points, the sum of whose distances to two fixed points is a given fixed constant (so when

the two points coincide, the ellipse becomes a circle). One also sometimes encounters the

hyperbola, the set of all points the difference of whose distance from two points is the same.

Circles, ellipses, parabolas and hyperbola are all examples of conic sections, shapes beloved

of ancient mathematicians. In a modern calculus course like the present one, we will not have

any need for conic sections, but if you interested there is a chapter in Spivak on the topic.

Two important functions that we will use for examples are the trigonometric functions

sin and cos. We’ll give a provisional definition here; it won’t be until the spring semester,

when we have studied the derivative, that we will give a precise definition.
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Provisional definition of sin and cos The points reached on unit circle centered at the

origin, starting from (1, 0), after traveling a distance θ, measured counter-clockwise, is

(cos θ, sin θ).

The domain of point cos and sin is all of R, since one can travel any distance along the

circle. Negative distances are interpreted to mean clockwise travel, and distance greater than

2π (the circumference of the circle) simply traverse the circle many times.

Let’s watch the trajectory of cos, as a point travels around the circle:

• at θ = 0, we are at (1, 0), and so cos 0 = 1;

• as θ increases from 0 to π/2 (a quarter of the circle), we go from (1, 0) to (0, 1), with

decreasing x-coordinate, and so cos θ decreases from 1 to 0 as θ increases from 0 to π/2,

and cos π/2 = 0;

• as θ increases from π/2 to π, we go from (0, 1) to (−1, 0), with decreasing x-coordinate,

and so cos θ decreases from 0 to −1 as θ increases from π/2 to π, and cosπ = −1;

• as θ increases from π to 3π/2, we go from (−1, 0) to (0,−1), with increasing x-coordinate,

and so cos θ increases from −1 to 0 as θ increases from π to 3π/2, and cos 3π/2 = 0;

• as θ increases from 3π/2 to 2π, we go from (0,−1) to (1, 0), with increasing x-coordinate,

and so cos θ increases from 0 to 1 as θ increases from 3π/2 to 2π, and cos 2π = 1.

This gives the familiar graph of cos on the interval [0, 2π], and of course, since we are back

where we started after traveling fully around the circle, the graph just periodically repeats

itself from here on.

Going the other direction, as θ decreases from 0 to −π/2 (a quarter of the circle, clockwise),

we go from (1, 0) to (0,−1), with decreasing x-coordinate, and so cos θ decreases from 1 to 0

as θ decreases from 0 to −π/2, and cos−π/2 = 0, and continuing in this manner we see the

graph also extends periodically on the negative side of the y-axis.

We can play the same game with sin, and discover that this provisional definition72 yields

the expected periodic graph there, too.

The sin function, suitably modified, gives us a ready example of a function whose behavior

cannot be understand fully using a graph. Consider f(x) = sin(1/x) (on domain R− {0})
(formally, the composition of sin with the function that takes reciprocal). Just like sin, this

is a function that oscillates, but unlike sin the oscillations are not of length (2π in the case

of sin. As x comes from infinity to 1/(2π), 1/x goes from 0 to 2π, so f has one oscillation

in that (infinite) interval. Then, as x moves down from 1/(2π) to 1/(4π), 1/x goes from 2π

to 4π, so f has another oscillation in that (finite) interval. The next oscillation happens

in the shorter finite interval as x moves down from 1/(4π) to 1/(6π); the next in the even

72Why is this a provisional definition? Because it requires understanding length along the curved arc of a

circle. To make the notion of length along a curve precise, we need to first study the integral.
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shorter interval as x moves down from 1/(6π) to 1/(8π). As x gets closer to 0, the oscillations

happen faster and faster, until they get to a point where each oscillation is happening in

an interval that is shorter than the resolution of the graphing device. Go ahead and graph

f(x) = sin(1/x) on Desmos, and see what happens (in particular as you zoom in to (0, 0)).

This should convince you that a graph is not always a useful tool to understand a function.

Another function that illustrates the limitations of graphing is Dirichlet’s function:

f(x) =

{
1 if x is rational

0 if x is irrational.

Because the rationals are “dense” in the reals — there are rationals arbitrarily close to any

real — and the irrationals are also dense, any attempt at a graph of f is going to end up

looking like two parallel straight lines, one along the x-axis (corresponding to the irrational

inputs) and the other one unit higher (corresponding to the rational inputs), and this is

certainly a picture that fails the vertical line test.

Going back to f(x) = sin(1/x), let’s consider a related function, g(x) = x sin(1/x) (again

on domain R = {0}). Again this has oscillations that get arbitrarily close together as x

gets close to 0, but now these oscillations are “pinched” by the lines y = x and y = −x, so

as we get closer to zero, the amplitudes of the oscillations (difference between highest and

lowest point reached) get smaller and smaller. We will soon discuss the significant difference

between f and g in their behavior close to 0. For now, let’s ask the question

how do f and g behave for very large positive inputs?

It’s not hard to see that f should be getting closer to 0 as the input x gets larger — for large

x, 1/x is close to 0 and sin 0 = 0. It’s less clear what happens to g. The sin(1/x) part is

going to 0, while the x part is going to infinity. What happens when these two parts are

multiplied together?

• Is the x part going to infinity faster than the sin(1/x) part is going to 0, leading to the

product g going to infinity?

• Or is the x part going to infinity slower than the sin(1/x) part is going to 0, leading to

the product g going to zero?

• Or are they both going to their respective limits at roughly the same rate, so that in

the product they balance each other out, and g gets closer to some fixed number?

• Or is g oscillating as x grows, not moving towards some limit?

A look at the graph of g on a graphing calculator suggests the answer. To mathematically

pin down the answer, we need to introduce a concept that is central to calculus, and has

been central to a large portion of mathematics for the last 200 years, namely the concept of

a limit.
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