
6 Limits

What does a function “look like” as the inputs “approach” a particular input? We’ll formalize

this vague question, already brought up at the end of the last section, using the notion of a

limit. To begin, let us note that there are many possible behaviors a function might exhibit

as the inputs approach a particular value a. We illustrate ten possible such behaviors here.

1. Function exhibits no problems at a f1(x) = x2 at a = 1.

2. Function defined nowhere near a f2(x) =
√
−x at a = 1.
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3. Function blows up to infinity approaching a f3(x) = 1/(1 + x) at a = −1.

4. Function not defined at a, but otherwise unremarkable f4(x) = 1/(1 + (1/(1 +

x))), a = −1. This situation, a function with a “hole”, might seem odd, but it can arise

naturally. Notice here that f4 = f3 ◦ f3, and that the expression on the right-hand side

of the definition of f4 can be re-written as (1 + x)/(2 + x), which does make sense at

x = −1. So the function f4 = f3 ◦ f3, (with natural domain R− {−1,−2}), is identical

to the function that sends x to (1 + x)/(2 + x) (which has natural domain R− {−2}),
except at −1, where f4 has a “naturally occurring” hole.

Notice also the graphical notation that we use to indicate the “hole” at −1: literally, a

hole.
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5. Function with “wrong value” at a f5(x) =

{
f4(x) if x 6= −1

4 if x = −1
at a = −1.

6. Function with a “jump” at a (1) f6(x) = x
|x| at a = 0. The natural domain here is

R− {0}, and for positive x, x/|x| = 1 while for negative x, x/|x| = −1. Notice that we

graphically indicate the failure of the function to be defined at 0 by two holes, one at

the end of each of the intervals of the graph that end at 0.
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7. Function with a “jump” at a (2) f7(x) =

{
f6(x) if x 6= 0

1/2 if x = 0
at a = 0. Notice that

we graphically indicate the value of the function at 0 with a solid holes at the appropriate

height.

8. Function with a “jump” at a (3) f8(x) =

{
f6(x) if x 6= 0

1 if x = 0
at a = 0. Notice that

here we graphically indicate the behavior of the function around its jump with an

appropriate combination of holes and solid holes.
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9. Oscillatory function near a f9(x) = sin(1/x) at a = 0. The natural domain here is

R−{0}. Notice the complete failure of the graph to convey the behavior of the function!

10. Chaotic function near a f10(x) =

{
1 if x is rational

0 if x is irrational
at a = 0. This function is

often called the Dirichlet function73. Because the rationals are dense in the reals, and

so are the irrationals (given any real, there are rationals arbitrarily close to it, and

73After the German mathematician Peter Dirichlet, https://en.wikipedia.org/wiki/Peter_Gustav_

Lejeune_Dirichlet.
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irrationals arbitrarily close to it), the graph of f10 just looks like two horizontal lines,

and appears to completely fail the vertical line test!

Other behaviors are possible, too, and of course, we could have one kind of behavior on

one side of a, and another on the other side.

6.1 Definition of a limit

We would like to develop a definition of the notion “f approaches a limit near a”, or “the

outputs of f approach a limit, as the inputs approach a”, that accounts for our intuitive

understanding of the behavior of each of f1 through f10. Here is an intuitive sense of what is

going on in each of the examples:

• f1 approaches 1 near 1 (as input values get closer to 1, outputs values seem to get closer

to 1).

• f2 doesn’t approach a limit near 1 (it isn’t even defined near 1).

• f3 doesn’t approach a limit near −1 (or, it approaches some infinite limit — as input

values get closer to −1, output values either get bigger and bigger positively, or bigger

and bigger negatively).

• Even though f4 is not defined at −1, it appears that f4 approaches a limit of 0 near −1

(as input values get closer to −1, outputs values seem to get closer to 0).

• Even though f5(−1) is not 0, it seems reasonable still to say that f5 approaches a limit

of 0 near −1 (as input values get closer to −1, outputs values seem to get closer to 0).
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• f6 doesn’t approach a limit near 0 (as input values get closer to 0 from the right, the

outputs values seem to get closer to 1, but as input values get closer to 0 from the left,

the outputs values seem to get closer to −1; this ambiguity suggests that we should not

declare there to be a limit).

• f7 doesn’t approach a limit near 0 (exactly as f6: specifying a value for the function at

0 doesn’t change the behavior of the function as we approach 0).

• f8 doesn’t approach a limit near 0 (exactly as f7).

• f9 doesn’t approach a limit near 0 (the outputs oscillate infinitely in the interval [−1, 1]

as the inputs approach 0, leading to an even worse ambiguity than that of f6).

• f10 doesn’t approach a limit near 0 (the outputs oscillate infinitely between −1 and 1

as the inputs approach 0, again leading to an worse ambiguity than that of f6).

What sort of definition will capture these intuitive ideas of the behavior of a function, near

a potential input value? As a provisional definition, we might take what is often considered

the “definition” of a limit:

Provisional definition of function tending to a limit: A function f tends

to a limit near a, if there is some number L such that f can be made arbitrarily

close to L by taking input values sufficiently close to a.

This definition seems to work fine for f1 through f4. For f4, for example, it seems very clear

that we can get the function to take values arbitrarily close to 0, by only considering input

values that are pinned to be sufficiently close to −1 (on either side); and for f3, no candidate

L that we might propose for the limit will work — as soon as we start considering inputs

that are too close to −1, the values of the outputs will start to be very far from L (they will

either have the wrong sign, or have far greater magnitude than L).

It breaks down a little for f5: we can’t make output values of f5 be arbitrary close to 0

by choosing input values sufficiently close to −1, because −1 surely fits the “sufficiently close

to −1” bill (nothing could be closer!), and f5(−1) = 4, far from 0. The issue here is that we

want to capture the sense of how the function is behaving as inputs get close to a, and so

we really should ignore what happens exactly at a. There’s an easy fix for this: add “(not

including a itself)” at the end of the provisional definition.

f6 presents a more serious problem. We can certainly make the outputs of f6 be arbitrarily

close to 1, by taking inputs values sufficiently close to 0 — indeed, any positive input value

has output exactly 1. But by the same token, we can make the outputs of f6 be arbitrarily

close to −1, by taking inputs values sufficiently close to 0 — any negative input value has

output exactly −1.

The issue is that we are “cherry picking” the inputs that are sufficiently close to 0 —

positive inputs to get the limit to be 1, negative inputs to get the limit to be −1. In f9 the

situation is even more dramatic. If we pick any L between −1 and 1, we can find a sequence
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of numbers (one in each oscillation of the function) that get arbitrarily close to 0, such that

when f9 is evaluated at each of these numbers, the values are always exactly L (not just

getting closer to L) — just look at the infinitely many places where that line y = L cuts

across the graph of f9. So we can make, with our provisional definition, a case for any number

between −1 and 1 being a limit of the function near 0! This runs at odds to intuition.

We need to remove the possibility of “cherry-picking” values of the input close to a to

artificially concoct a limit that shouldn’t really be a limit. The way we will do that is best

described in terms of a game, played by Alice and Bob.

Suppose Alice and Bob are looking at the function f : R → R given by x 7→ 3x. Alice

believes that as x approaches 1, f approaches the limit 3. Bob is skeptical, and needs

convincing. So:

• Bob says “1”, and challenges Alice to show that for all values of the input sufficiently

close to 3, f is within 1 of 9 (asking for all values is what eliminates the possibility of

cherry-picking values). Think of “1” as a “window of tolerance”.

• Alice notices that as x goes between 22/3 and 31/3, f(x) goes between 8 and 10; that

is, as long as x is within 1/3 of 3, f(x) is within 1 of 9. So she convinces Bob that

output values can be made to be within 1 of 9 by telling him to examine values of x

within 1/3 of 1.

• Bob is ok with this, but now wants to see that f can be forced to be even closer to 1.

He says “1/10”, a smaller window of tolerance, and challenges Alice to show that for

all values of the input sufficiently close to 3, f is within 1/10 of 9. Alice repeats her

previous calculations with the new challenge number, and responds by saying “1/30”:

all values of x within 1/30 of 3 give values of f(x) within 1/10 of 9.

• Bob ups the ante, and says “1/1000”. Alice responds by saying “1/3000”: all values of

x within 1/3000 of 3 give values of f(x) within 1/1000 of 9.

• Bob keeps throwing values at Alice, and Alice keeps responding. But Bob won’t be

fully convinced, until he knows that Alice can make a valid response for every possible

window of tolerance. So, Bob says “ε: an arbitrary number greater than 0”. Now

Alice’s response must be one that depends on ε, and is such that for each particular

choice of ε > 0, evaluates to a valid response. She notices that as x goes between

3− ε/3 and 3 + ε/3, f(x) goes between 9− ε and 9 + ε; that is, as long as x is within

ε/3 of 3, f(x) is within ε of 9. She tells this to Bob, who is now convinced that as x

approaches 1, f approaches the limit 3.

This leads to the definition of a limit.

Definition of function tending to a limit: A function f tends to a limit near

a, if
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• f is defined near a, meaning that for some small enough number b, the set

(a− b, a+ b) \ {a} is in domain of f ,

and

• there is some number L such that

• for all positive numbers ε

• there is a positive number δ such that

• whenever x is within a distance δ of a (but is not equal to a)

• f is within ε of L.

More succinctly, f tends to a limit near a, if f is defined near a and there is some

number L such that for all ε > 0 there is δ > 0 such that for all x, 0 < |x− a| < δ

implies |f(x)− L| < ε.

We write f(x)→ L as x→ a or limx→a f(x) = L.

6.2 Examples of calculating limits from the definition

Here’s a simple example. Consider the constant function f(x) = c for some real c. It seems

clear that for any real a, limx→a f(x) = c. To formally verify this, let ε > 0 be given. We

need to find a δ > 0 such that if 0 < |x− a| < δ, then |f(x)− c| < ε. But |f(x)− c| = 0 < ε

for every x; so we can choose any δ > 0 and the implication will be true. In particular, it will

be true when we take, for example, δ = 1.

Here’s another simple example. Consider the linear function f(x) = x. It seems clear

that for any real a, limx→a f(x) = a. To formally verify this, let ε > 0 be given. We need to

find a δ > 0 such that if 0 < |x− a| < δ, then |f(x)− a| < ε. But |f(x)− a| = |x− a|; so we

are looking for a δ > 0 such that if 0 < |x− a| < δ, then |x− a| < ε. It is clear that we will

succeed in this endeavor by taking δ = ε; note that since ε > 0, this choice of δ is positive.

The next simplest example is the function f(x) = x2. It seems clear that for any real

a, limx→a f(x) = a2. The verification of this from the definition will be considerably more

involved than the first two examples.

Let ε > 0 be given. We need to find a δ > 0 such that if 0 < |x−a| < δ, then |x2−a2| < ε.

Since the only leverage we have is the choice of δ, and δ is related to |x− a|, it seems like

it will be very helpful to somehow rewrite |x2 − a2| < ε in a way that brings the expression

|x− a| into play. We have such a way, since

|x2 − a2| = |(x− a)(x+ a)| = |x− a||x+ a|.

We want to make the product of these two things small (less than ε). We can easily make

|x − a| small — in fact, we get a completely free hand in choosing how small this term is.

We don’t get to make |x+ a| small, however, and in fact we shouldn’t expect to be able to

make it small: near a, |x+ a| is near |2a|, which isn’t going to be arbitrarily small.
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This is an easily resolved problem. We only need to make |x+ a| slightly small. We can

then use the freedom we have to make |x− a| as small as we want, to make it so small that,

even when multiplied by |x+ a|, the product is still smaller than ε.

Here’s a first attempt: as we’ve said, near a, |x+ a| is near |2a|, so |x− a||x+ a| is near

|2a||x− a|. So we should make |x− a| be smaller than ε/|2a|, to get |x− a||x+ a| smaller

than ε.

One problem here is that |a| might be 0, and so we are doing an illegal arithmetic operation.

Another problem is that we are vaguely saying that “near a”, |x+ a| is “close to” |2a|, which

is not really an acceptable level of precision.

Here’s a more rigorous approach: let’s start by promising that whatever δ we choose, it

won’t be bigger than 1 (this is a completely arbitrary choice). With this promise, we know

that when 0 < |x− a| < δ we definitely have |x− a| < 1, so x is in the interval (a− 1, a+ 1).

That means that x + a is in the interval (2a− 1, 2a + 1). At most how big can |x + a| be

in this case? At most the maximum of |2a − 1| and |2a + 1|. By the triangle inequality,

|2a− 1| ≤ |2a|+ 1 and |2a+ 1| ≤ |2a|+ 1, and so, as long as we stick to our promise that

δ ≤ 1, we have |x+ a| < |2a|+ 1. This makes |x2 − a2| < (2|a|+ 1)|x− a|. We’d like this to

be at most ε, so we would like to choose δ to be no bigger than ε/(2|a| + 1) (thus forcing

|x− a| < ε/(2|a|+ 1) and |x2 − a2| < ε whenever 0 < |x− a| < δ).

We don’t want to simply say “ok, take δ to be any positive number ≤ ε/(2|a|+ 1)” (note

that ε/(2|a|+ 1) > 0, so there is such a positive δ). Our choice here was predicated on our

promise that δ ≤ 1. So what we really want to do, is choose δ to be any positive number

no bigger than both ε/(2|a|+ 1) and 1. We can do this, for example, by taking δ to be the

minimum of ε/(2|a|+ 1) and 1, or, symbolically,

δ = min

{
ε

2|a|+ 1
, 1

}
.

Going back through the argument with this choice of δ, we see that all the boxes are

checked: suppose 0 < |x− a| < δ. Then in particular we have |x− a| < 1, and we also have

|x−a| < ε/(2|a|+1). From |x−a| < 1 we deduce a−1 < x < a+1, so 2a−1 < x+a < 2a+1,

so |x+a| < max{|2a− 1|, |2a+ 1|} ≤ 2|a|+ 1. From this and |x−a| < ε/(2|a|+ 1) we deduce

|x2 − a2| = |x+ a||x− a| < ε

2|a|+ 1
(2|a|+ 1) = ε,

and so, since ε was arbitrarily, we deduce that indeed limx→a f(x) = a2.

We do one more example: limx→2
3
x
. It seems clear that this limit should be 3/2. Given

ε > 0, we need δ > 0 such that 0 < |x− 2| < δ implies |(3/x)− (3/2)| < ε. We have∣∣∣∣3x − 3

2

∣∣∣∣ =

∣∣∣∣6− 3x

2x

∣∣∣∣ =
3

2

|x− 2|
|x|

.

We want to make this small, which requires making |x| large. If δ ≤ 1 then 0 < |x− 2| < δ

implies x ∈ (1, 3), so |x| > 1 and 3/(2|x|) < 3/2. So if both δ ≤ 1 and δ ≤ 2ε/3, we have∣∣∣∣3x − 3

2

∣∣∣∣ =
3

2

|x− 2|
|x|

<
3

2
· 2ε

3
= ε
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as long as 0 < |x− 2| < δ. Taking δ to be min{1, 2ε/3} verifies limx→2 3/x = 3/2.

Notice that we initially choose δ ≤ 1 to get a lower bound on |x|. Any δ would have

worked, as long as we avoided have 0 in the possible range of values for x (if we allowed 0 to

be in the possible range of values for x we would have no upper bound on 1/|x|).
Essentially all examples of proving claimed values of limits directly from the definition

follow the path of these last two examples:

• do some algebraic manipulation on the expression |f(x)−L| to isolate |x−a| (a quantity

we have complete control over);

• by putting a preliminary bound on δ, put some bound B > 0 on the part of |f(x)− L|
that does not involve |x− a|;

• choose δ to be the smaller of ε/B and the preliminary bound on δ.

6.3 Limit theorems

To streamline the process of computing limits, we prove a few general results. The first is

a result that says that the limits of sums, products and ratios of functions, are the sums,

products and ratios of the corresponding limits.

Theorem 6.1. (Sum/product/reciprocal theorem) Let f, g be functions both defined near

some a. Suppose that limx→a f(x) = L and limx→a g(x) = M (that is, both limits exist, and

they take the claimed values). Then

• limx→a(f + g)(x) exists and equals L+M ;

• limx→a(fg)(x) exists and equals LM ; and,

• if M 6= 0 then limx→a(1/g)(x) exists and equals 1/M .

Proof: We begin with the sum statement. Since f, g are defined near a, so is f + g. Let

ε > 0 be given. Because limx→a f(x) = L, there is δ1 > 0 such that 0 < |x− a| < δ1 implies

|f(x)− L| < ε/2, and because limx→a g(x) = M , there is δ2 > 0 such that 0 < |x− a| < δ2

implies |g(x)−M | < ε/2. Now if δ = min{δ1, δ2}, we have that if 0 < |x− a| < δ then

|(f + g)(x)− (L+M)| = |(f(x) + g(x))− (L+M)|
= |(f(x)− L) + (g(x)−M)|
≤ |f(x)− L|+ |g(x)−M | by triangle inequality

< ε/2 + ε/2 = ε.

This shows that limx→a(f + g)(x) = L+M .
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We now move on to the product statement, which is a little more involved. Again, since

f, g are defined near a, so is fg. Let ε > 0 be given. We have74

|(fg)(x)− LM | = |f(x)g(x)− LM)|
= |f(x)g(x)− Lg(x) + Lg(x)− LM)|
= |g(x)(f(x)− L) + L(g(x)−M)|
≤ |g(x)||f(x)− L|+ |L||g(x)−M | by triangle inequality.

We can make |f(x)−L| and |g(x)−M | as small as we like; we would like to make them small

enough that |g(x)||f(x)− L| < ε/2 and |L||g(x)−M | < ε/2. The second of those is easy to

achieve. There’s δ1 > 0 such that 0 < |x− a| < δ1 implies |g(x)−M | < ε/(2(|L|+ 1)), so

|L||g(x)−M | < |L|(ε/(2(|L|+ 1))) < ε/2.75

The first is less easy. We need an upper bound on |g(x)|. We know that there is a δ2 > 0

such that 0 < |x− a| < δ2 implies |g(x)−M | < 1 so |g(x)| < |M |+ 1. There’s also a δ3 > 0

such that 0 < |x− a| < δ3 implies |f(x)− L| < ε/(2(|M |+ 1)).

As long as δ is at most the minimum of δ1, δ2 and δ3, we have that 0 < |x− a| < δ implies

all of

• |L||g(x)−M | < ε/2

• |g(x)| < |M |+ 1, so |g(x)||f(x)− L| < (|M |+ 1)||f(x)− L||

• |f(x)− L| < ε/(2(|M |+ 1)), so |g(x)||f(x)− L| < ε/2,

• so, combining first and fourth points, |g(x)||f(x)− L|+ |L||g(x)−M | < ε.

It follows from the chain of inequalities presented at the start of the proof that 0 < |x−a| < δ

implies

|(fg)(x)− LM | < ε,

and so limx→a(fg)(x) = LM .

We now move on to the reciprocal statement. Here we have to do some initial work,

simply to show that (1/g) is defined near a. To show this, we need to establish that near a,

g is not 0. The fact that g approaches M near a, and M 6= 0, strongly suggests that this is

the case. To verify it formally, we make (and prove) the following general claim, that will be

of some use to us in the future.

74We use a trick here — adding and subtracting the same quantity. The motivation is that we want to

introduce |f(x)−L| into the picture, so we subtract Lg(x) from f(x)g(x). But to maintain equality, we then

need to add Lg(x); this conveniently allows us to bring |g(x)−M | into the picture, also. We’ll see this kind

of trick many times.
75Why did we want 2(|L|+ 1) in the denominator, rather than 2|L|? This was an overkill designed to avoid

the possibility of dividing by 0.

131



Claim 6.2. Let g be defined near a, and suppose limx→a g(x) exists and equals M . If M > 0,

then there is some δ such that 0 < |x− a| < δ implies g(x) ≥M/2. If M < 0, then there is

some δ such that 0 < |x− a| < δ implies g(x) ≤M/2. In particular, if M 6= 0 then there is

some δ such that 0 < |x− a| < δ implies |g(x)| ≥ |M |/2 and g(x) 6= 0.

Proof of claim: Suppose M > 0. Applying the definition of limx→a g(x) = M with ε = M/2

we find that there is some δ such that 0 < |x − a| < δ implies |g(x) −M | < M/2, which

in turn implies g(x) ≥ M/2. On the other hand, if M < 0, then applying the definition of

limx→a g(x) = M with ε = −M/2 we find that there is some δ such that 0 < |x − a| < δ

implies |g(x)−M | < −M/2, which in turn implies g(x) ≤ −M/2.

We have established that 1/g is defined near a, and in fact that if M > 0 then g is positive

near a, while if M < 0 then g is negative near a. We next argue that limx→a(1/g)(x) = 1/M .

Given ε > 0, choose δ1 > 0 such that 0 < |x− a| < δ1 implies |g(x)| ≥ |M |/2 (which we can

do by the claim). We have∣∣∣∣(1

g

)
(x)− 1

M

∣∣∣∣ =

∣∣∣∣ 1

g(x)
− 1

M

∣∣∣∣
=

∣∣∣∣M − g(x)

Mg(x)

∣∣∣∣
=
|g(x)−M |
|M ||g(x)|

≤ 2

|M |2
|g(x)−M |.

We would like to make |(1/g)(x)− (1/M)| < ε. One way to do this is to force (2/|M |)2|g(x)−
M | to be smaller than ε, that is, to force |g(x)−M | to be smaller than (|M |2ε)/2.

Since g →M as x→ a, and since (|M |2ε)/2 > 0, there is a δ2 > 0 such that 0 < |x−a| < δ2

indeed implies |g(x)−M | < (|M |2ε)/2.

So, if we let δ be the smaller of δ1 and δ2 then 0 < |x−a| < δ implies |(1/g)(x)−1/M | < ε,

so that indeed limx→a(1/g)(x) = 1/M .

An obvious corollary of the above is the following, which we give a proof of as a prototype

of proofs of this kind.

Corollary 6.3. For each n ≥ 1, let f1, . . . , fn be functions all defined near some a. Suppose

that limx→a fi(x) = Li for each i ∈ {1, . . . , n}. Then

• limx→a(f1 + · · ·+ fn)(x) exists and equals L1 + · · ·+ Ln.

Proof: We proceed by induction on n, with the base case n = 1 trivial (it asserts that if

limx→a f1(x) = L1 then limx→a f1(x) = L1).

For the induction step, suppose the result is true for some n ≥ 1, and that we are given

n+ 1 functions f1, . . . , fn+1, all defined near a, with fi → Li near a for each i. We have

lim
x→a

(f1 + · · ·+ fn)(x) = L1 + · · ·+ Ln

132



by the induction hypothesis, and limx→a fn+1(x) = Ln+1 by hypothesis of the corollary. By

the sum/product/reciprocal theorem, we have that limx→a((f1 + · · ·+ fn) + fn+1)(x) exists

and equals (L1 + · · ·+Ln) +Ln+1; but since ((f1 + · · ·+ fn) + fn+1)(x) = (f1 + · · ·+ fn+1)(x)

and (L1 + · · ·+ Ln) + Ln+1 = L1 + · · ·+ Ln + Ln+1, this immediately says that

lim
x→a

(f1 + · · ·+ fn+1)(x) = L1 + · · ·+ Ln+1.

The corollary is proven, by induction.76

We may similarly prove that for each n ≥ 1, if f1, . . . , fn are functions all defined near

some a, and if limx→a fi(x) = Li for each i ∈ {1, . . . , n}, then

• limx→a(f1 · · · · · fn)(x) exists and equals L1 · · · · · Ln.

This has an important consequence. Starting from the basic results that for any a, c,

limx→a c = c and limx→a x = a, by repeated applications of the sum/product/reciprocal

theorem, together with its corollaries, we obtain the following important labor-saving results:

• Suppose that P is a polynomial. Then for any a, limx→a P (x) exists and equals P (a).

• Suppose that R is a rational function, say R = P/Q where P,Q are polynomials. If a

is in the domain of R, that is, if Q(a) 6= 0, then limx→aR(x) exists and equals R(a),

that is,

lim
x→a

P (x)

Q(x)
=
P (a)

Q(a)
.

For example, we can immediately say

lim
x→1

2x2 − 4x

x3 − 8
=

2(1)2 − 4(1)

(1)3 − 8
= −2

7
,

piggy-backing off our general theorems, and avoiding a nasty derivation from first principles.

What about limx→2(2x2 − 4x)/(x3 − 8)? Here a direct evaluation is not possible, because

2 is not in the domain of (2x2 − 4x)/(x3 − 8). But because 2 is not in the domain, we can

algebraic manipulate (2x2 − 4x)/(x3 − 8) by dividing above and below the line by x− 2 —

this operation is valid exactly when x 6= 2! Formally we can say

2x2 − 4x

x3 − 8
=

2x(x− 2)

(x− 2)(x2 + 2x+ 4)
=

2x

x2 + 2x+ 4
,

valid on the entire domain of (2x2 − 4x)/(x3 − 8). So

lim
x→2

2x2 − 4x

x3 − 8
= lim

x→2

2x

x2 + 2x+ 4
=

4

14
=

2

7
.

76Notice that in the induction step, dealing with deducing p(n+ 1) from p(n), we needed to invoke the

n = 2 case. This occurs frequently when extending a result concern two objects to the obvious analog result

concerning many objects. Examples include the general distributive law, and the general triangle inequality.
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One last note on the limit. We have been implicitly assuming throughout all of this

section that if f approaches a limit L near a, then L is the only limit that it approaches. We

can easily prove this.

Claim 6.4. Suppose f is defined near a and that limx→a f(x) = L, and also limx→a f(x) = M .

Then L = M .

Proof: Suppose for a contradiction that L 6= M . Assume, without any loss of generality77,

that L > M . Set ε = (L −M)/4. There is a δ > 0 such that 0 < |x − a| < δ implies

|f(x)−L| < ε and |f(x)−M | < ε. The first of these inequalities says that f(x) > L− ε, and

the second says f(x) < M + ε, so together they imply that L− ε < M + ε, or L−M < 2ε,

or (L−M)/4 < ε/2, or ε < ε/2, a contradiction. We conclude that L = M .

6.4 Non-existence of limits

What does it mean for a function f not to tend to a limit L near a? For a function f to tend

to a limit L near a, two things must happen:

1. f must be defined near a, and

2. for all ε > 0 there is δ > 0 such that for all x, if 0 < |x− a| < δ then |f(x)− L| < ε.

So for f not to tend to L, either the first clause above fails, so f is not defined near a, or the

second clause fails. To understand what it means for the second clause to fail, it’s helpful to

write it symbolically, and then use the methods we have discussed earlier to negate it. The

clause is

(∀ε)(∃δ)(∀x)((0 < |x− a| < δ)⇒ (|f(x)− L| < ε))78

and its negation is

(∃ε)(∀δ)(∃x)((0 < |x− a| < δ) ∧ (|f(x)− L| ≥ ε)).

So, unpacking all this, we get:

Definition of a function not tending to a limit L near a: f does not

approach the limit L near a if either

• f is not defined near a (meaning, in any open interval that includes a, there

are points that are not in the domain of f)

or

77A handy phrase, but one to be used only when you are really saying that no generality is lost.
78Notice that we have included the quantification ∀x. Without this, the clause would be a predicate

(depending on the variable x), rather than a statement.
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• there’s an ε > 0 (a window of tolerance around L presented by Bob) such

that

• for all δ > 0 (no matter what window of tolerance around a that Alice

responds with)

• there is an x with 0 < |x− a| < δ (an x 6= a that is within δ of a)

• but with |f(x)− L| ≥ ε (f(x) is at least ε away from L).

As an example, consider the function f6 defined previously, that is given by f6(x) = x/|x|.

It’s seems quite clear that f6 does not approach a limit near 0; the function gets close to both

1 and −1 in the vicinity of 0, so there isn’t a single number that the function gets close to

(and we know that if the limit exists, it is unique).

We use the definition just given of a function not tending to a limit, to verify that

limx→0 f6(x) 6= 3/4. Take ε = 1/10 (this is fairly arbitrary). Now consider any δ > 0. We

need to show that there is an x 6= 0, in the interval (−δ, δ), with |f6(x) − 3/4| ≥ 1/10.

There are many such x’s that work. For example, consider x = δ/2; for this choice of x,

|f6(x)− 3/4| = |(δ/2)/(|δ/2|)− 3/4| = |1− 3/4| = |1/4| = 1/4 ≥ 1/1079

Why did we choose ε = 1/10? We intuited that output values of f6 could be made

arbitrarily close to 1 by cherry-picking values of x close to 0. So to show that values of the

output can’t be made always arbitrarily close to 3/4 by choosing values of the input close

enough to 0, we choose an ε so that the interval (3/4− ε, 3/4 + ε) did not get too close to 1

— that allowed us to choose an x close to 0 for which f6(x) was not close to 3/4. Any ε less

that 1/4 would have worked.80

More generally, what does it mean for f not to tend to any limit near a? It means that

for every L, f does not tend to limit L near a.

79We could have equally well picked x = −δ/2; then |f6(x)− 3/4| = 7/4 ≥ 1/10.
80In fact, any ε less than 11/4 would have worked — we could have noticed that output values of f6 could

be made arbitrarily close to −1 by cherry-picking values of x close to 0.
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Definition of a function not tending to a limit near a: f does not approach

a limit near a if for every L it is the case that f does not approach the limit L

near a.

Going back to our previous example: we claim that limx→0 f6(x) does not exist. Indeed,

suppose that L is given, and proposed as a (the) limit. We want to find an ε > 0 such that

for any δ > 0, we can find at least one value of x 6= 0 that is within δ of 0, but that f6(x) is

not within ε of L. We notice that by cherry-picking values of x arbitrarily close to 0, we can

get f6(x) arbitrarily close to both −1 and to 1. This suggests the following strategy:

• If L ≥ 0: take ε = 1/2. Given δ > 0, consider x = −δ/2. That’s certainly within δ of 0

(and is certainly not equal to 0). But f6(x) = −1, so f6(x) is distance at least 1 from

L, and so not distance less than 1/2.

• If L < 0: again take ε = 1/2. Given δ > 0, consider x = δ/2. It’s non-zero and within

δ of 0, but f6(x) = 1, so f6(x) is distance more than 1 from L, and so not distance less

than 1/2.

One more example: we claim that limx→0 | sin(1/x)| does not exist. The intuition behind

this is the same as for the previous example: by cherry picking values of x, we can get

sin(1/x) to take the value 1, arbitrarily close to 0, and we can get it to take the value

0. Specifically, | sin(1/x)| takes the value 1 at 1/x = ±π/2,±3π/2,±5π/2, . . ., so at x =

±2/π,±2/3π,±2/5π, . . ., or more succinctly at x = ±2/((2n + 1)π), n = 0, 1, 2, 3, . . .; and

| sin(1/x)| takes the value 0 at 1/x = ±π,±2π,±3π, . . ., so at x = ±1/(nπ), n = 0, 1, 2, 3, . . ..

So, given L (a proposed limit for | sin(1/x)| near 0), we can again treat two cases, depending

on whether L is far from 0 or far from 1.

• If L ≥ 1/2: take ε = 1/4. Given δ > 0, there is some n large enough that x := 1/(nπ)

is in the interval (−δ, δ)81 (and is non-zero). For this x, | sin(1/x)| = 0, which is not in

the interval (L− 1/4, L+ 1/4).

• If L < 1/2: again take ε = 1/4. Given δ > 0, there is some n large enough that

x := 2/((2n+1)π) is in the interval (−δ, δ) (and is non-zero). For this x, | sin(1/x)| = 1,

which is not in the interval (L− 1/4, L+ 1/4).

We conclude that limx→0 | sin(1/x)| does not exist.

In the homework, you’ll deal with another situation where a limit doesn’t exist: where the

output values don’t approach a specific value, because they get arbitrarily large in magnitude

near the input. We’ll return to these “infinite limits” later.

One last comment for the moment about limits not existing: while limx→0 | sin(1/x)| does

not exist, the superficially similar limx→0 x| sin(1/x)| does, and it’s easy to prove that it takes

the value 0. Indeed, given ε > 0, take δ = ε. If 0 < |x| < δ then |x| sin(1/x)|| ≤ |x| < δ = ε,

81Is there???
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so the limit is 0. This illustrates that while oftentimes computing limits directly from the

definition is a slog, it can sometimes be surprisingly easy.

There’s a general phenomenon that this last example — f(x) = x| sin(1/x)| near 0 — is

a special case of. The function f(x) = x| sin(1/x)| is “squeezed” between two other functions

that are quite easy to understand. If g`, gu are defined by

g`(x) =

{
x if x < 0

0 if x ≥ 0

and

gu(x) =

{
0 if x < 0

x if x ≥ 0

then we easily have that

g`(x) ≤ f(x) ≤ gu(x)

for all real x. Indeed, for x ≥ 0 we have, using 0 ≤ | sin(1/x)| ≥ 1, that 0 ≤ x| sin(1/x)| ≤ x,

while if x < 0 then 0 ≤ | sin(1/x)| ≥ 1 implies 0 ≥ x| sin(1/x)| ≥ x or x ≤ x| sin(1/x)| ≤ 0;

and these two inequalities together say that g`(x) ≤ f(x) ≤ gu(x).

We also have that g` → 0 near 0, and that gu → 0 near 0. We verify the first of these

now (the second is left as an exercise). Given ε > 0 we seek δ > 0 so that x ∈ (−δ, δ) (and

x 6= 0) implies g`(x) ∈ (−ε, ε). Consider δ = ε. If non-zero x is in (−δ, δ) and is negative,

then g`(x) = x ∈ (−δ, δ) = (−ε, ε), while if it is positive then g`(x) = 0 ∈ (−δ, δ) = (−ε, ε).
This shows that g` → 0 near 0.

If both g` and gu are approaching 0 near 0, and f is sandwiched between gell and gu, then

it should come as no surprise that f is forced to approach 0 (the common limit of its upper

and lower bounds) near 0. The general phenomenon that this example illustrates is referred

to as a squeeze theorem.

Theorem 6.5. (Squeeze theorem) Let f, g, h be three functions, and let a be some real number.

Suppose that f, g, are all defined near a, that is, that there is some number ∆ > 0 such that

on the interval (a−∆, a+ ∆) it holds that f(x) ≤ g(x) ≤ h(x) (except possibly at a, which

might or might not be in the domains of any of the three functions). Suppose further that

limx→a f(x) and limx→a h(x) both exist and both equal L. Then limx→a g(x) exists and equals

L.

You will be asked for a proof of this in the homework.

6.5 One-sided limits

When discussing the squeeze theorem we saw the function

gu(x) =

{
0 if x < 0

x if x ≥ 0,

137



defined by cases, with different behavior to the right and left of 0 on the number line. When

establishing limx→0 gu(x) we need to consider separately what happens for positive x and

negative x. This strongly suggests that there could be some value in a refinement of the

definition of limit, that considers separately what happens for x values that are larger a, and

smaller than a. The natural refinement is referred to as a one-sided limit.

Definition of f approaching L near a from the right or from above: A function f

approaches a limit L from the right near a from the right (or from above)82 if

• f is defined near a, to the right, meaning that there is some δ > 0 such that all of

(a, a+ ∆) is in the domain of f ,

and

• for all ε > 0 there is δ > 0 such that 0 < x− a < δ implies |f(x)− L| < ε; that is,

whenever x is within δ of a, and x is greater than a (“above” a in magnitude, “to

the right of” a on the number line), then f(x) is within ε of L.

We write

• limx→a+ f(x) = L, or limx↘a f(x) = L

• f → L (or f(x)→ L) as x→ a+ (or as x↘ a).

Definition of f approaching L near a from the left or from below: A function f ap-

proaches a limit L near a from the left (or from below) if

• f is defined near a, to the left, meaning there is δ > 0 with (a − ∆, a) in the

domain of f ,

and

• for all ε > 0 there is δ > 0 such that −δ < x− a < 0 implies |f(x)− L| < ε; that

is, whenever x is within δ of a, and x is less than a (“below” a in magnitude, “to

the left of” a on the number line), then f(x) is within ε of L.

We write

• limx→a− f(x) = L, or limx↗a f(x) = L

• f → L (or f(x)→ L) as x→ a− (or as x↗ a).

As an example consider the familiar old function f6(x) = x/|x|. We know that limx→0 f6(x)

does not exist. But this coarse statement seems to miss something about f6 — that the

function seems to approach limit 1 near 0, if we are only looking at positive inputs, and

seems to approach limit −1 near 0, if we are only looking at negative inputs.

82Note well: as you’ll see from the definition, it is a that is being approached from above, not L
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The notion of one-sided limits just introduced captures this. We claim that limx→0+ f6(x)

exists, and equals 1. Indeed, given ε > 0, take δ = 1. if 0 < x−0 < δ then x > 0 so f6(x) = 1,

and so in particular |f6(x)− 1| = 0 < ε. Similarly, it’s easy to show limx→0− f6(x) = −1.

This example shows that both the one-sided limits can exist, while the limit may not exist.

It’s also possible for one one-sided limit to exist, but not the other (consider the function

which takes value sin(1/x) for positive x, and 0 for negative x, near 0), or for both not to

exist (consider sin(1/x) near 0). So, in summary, if the limit doesn’t exist, then at least three

things can happen with the one-sided limits:

• both exist, but take different values,

• one exists, the other doesn’t, or

• neither exists.

There’s a fourth possibility, that both one-sided limits exist and take the same value. But

that can’t happen when the limit does not exist, as we are about to see; and as we are also

about to see, if the limit exists then there is one one possibility for the two one-sided limits,

namely that they both exist and are equal.

Theorem 6.6. For a f be a function defined near a, limx→a f(x) exists and equals L if and

only if both of limx→a+ f(x), limx→a− f(x) exist and equal L.

Proof: Suppose limx→a f(x) exists and equals L. Let ε > 0 be given. There is δ > 0 such

that 0 < |x − a| < δ implies |f(x) − L| < ε. In particular that means that 0 < x − a < δ

implies |f(x)− L| < ε, so that limx→a+ f(x) exists and equal L, and −δ < x− a < 0 implies

|f(x)− L| < ε, so that limx→a− f(x) exists and equal L.

Conversely, both of limx→a+ f(x), limx→a− f(x) exist and equal L. Given ε > 0 there

is δ1 > 0 such that 0 < x − a < δ1 implies |f(x) − L| < ε, and there is δ2 > 0 such that

−δ2 < x − a < 0 implies |f(x) − L| < ε. If δ = min{δ1, δ2} then 0 < |x − a| < δ implies

that either 0 < x− a < δ ≤ δ1, or −δ2 ≤ −δ < x− a < 0. In either case |f(x)− L| < ε, so

limx→a f(x) exists and equal L.

6.6 Infinite limits, and limits at infinity

A minor deficiency of the real numbers, is the lack of an “infinite” number. The need for

such a number can be seen from a very simple example. We have that

lim
x→0

1

x2
does not exist,

but not because the expression 1/x2 behaves wildly near 0. On the contrary, it behaves very

predictably: the closer x gets to zero, from either the positive or the negative side, the larger

(more positive) 1/x2 gets, without bound. It would be helpful to have an “infinite” number,
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one that is larger than all positive numbers; such a number would be an ideal candidate for

the limit of 1/x2 near 0.

There is no such real number. But it useful to introduce a symbol that can be used to

encode the behavior of expressions like limx→0 1/x2.

Definition of an infinite limit Say that f approaches the limit infinity, or plus infinity,

near a, denoted

lim
x→a

f(x) =∞83

(or sometimes limx→a f(x) = +∞) if f is defined near a, and if

• for all real numbers M

• there is δ > 0

• such that for all real x,

0 < |x− a| < δ implies f(x) > M.84

Similarly, say that f approaches the limit minus infinity near a, denoted

lim
x→a

f(x) = −∞

if f is defined near a, and if for all real numbers M there is δ > 0 such that for all real

x,

0 < |x− a| < δ implies f(x) < M.

Before doing an example, we make the following labor-saving observation. Suppose that

we are trying to show limx→a f(x) =∞, and that, for some M0, we have found δ0 > 0 such

that 0 < |x−a| < δ0 implies f(x) > M0. Then for any M ≤M0 we have that 0 < |x−a| < δ0

implies f(x) > M . The consequence of this is that in attempting to prove limx→a f(x) =∞,

we can start by picking an arbitrary real M0, and then only attempt to verify the condition in

the definition for M ≥M0; this is enough to establish the limit statement. Often in practice,

this observation is employed by assuming that M > 0, which assumption allows us to divide

or multiply an inequality by M without either flipping the direction of the inequality, or

having to worry about dividing by 0.

A similar observation can be made about showing limx→a f(x) = −∞ (we need only verify

the condition for all M ≤M0; in practice this is often M < 0), and analogous observations

can be made for establishing one-sided infinite limits (see below).

83The symbol “∞” here is just that — a symbol. It is not, not, a number. It has no place in any arithmetic

calculation involving real numbers!
84Note that this is saying that f(x) can be forced to be arbitrarily large and positive, by taking values of x

sufficiently close to a.
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Now we move on to an example, limx→0 1/x2. We claim that this limit is plus infinity.

Indeed, let M > 0 be given. We would like to exhibit a δ > 0 such that 0 < |x| < δ implies

1/x2 > M . Now because x and M are both positive, we have that

1/x2 > M is equivalent to x2 < 1/M , which is equivalent to |x| < 1/
√
M .

So we may simply take δ = 1/
√
M (which is positive).

As with the ordinary limit definition, it is sometimes very helpful to be able to consider

separately what happens as we approach a from each of the two possible sides.

Definitions of one-sided infinite limits Say that f approaches the limit (plus) infinity

near a from above, or from the right, denoted

lim
x→a+

f(x) = (+)∞

if f is defined near a from above (in some interval (a, a+ δ), δ > 0), and if

• for all real numbers M > M0
85

• there is δ > 0

• such that for all real x,

0 < x− a < δ implies f(x) > M.

To get the definition of f approaching the limit minus infinity near a from above

(limx→a+ f(x) = −∞), change “M > M0” and “f(x) > M” above to “M < M0” and

“f(x) < M”.

To get the definition of f approaching the limit plus infinity near a from below, or from

the left (limx→a− f(x) = (+)∞), change “0 < x− a < δ” above to “−δ < x− a < 0”.

To get the definition of f approaching the limit minus infinity near a from below

(limx→a− f(x) = −∞), change “M > M0”, “f(x) > M” and “0 < x− a < δ” above to

“M < M0”, “f(x) < M” and “−δ < x− a < 0”.

As an example, we verify formally the intuitively clear result that

lim
x→1−

1

x− 1
= −∞.

Given M < 0, we seek δ > 0 such that x ∈ (1− δ, 1) implies 1/(x− 1) < M . Now for x < 1

we have x− 1 < 0, so in this range 1/(x− 1) < M is equivalent to 1 > M(x− 1), and for

M < 0 this is in turn equivalent to 1/M < x − 1, or x > 1 + 1/M . From this it is clear

that if we take δ = −1/M (note that this is positive, since we are assuming M < 086), then

x ∈ (1− δ, 1) indeed implies 1/(x− 1) < M .

85As observed after the definition of an infinite limit, this M0 can be completely arbitrary.
86Without this (valid) assumption, the limit calculation would be rather more awkward.
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As well as infinite limits, a very natural notion that slightly generalizes our concept of a

limit is that of a “limit at infinity”, capturing the behavior of a function as the input grows

unboundedly large in magnitude, either positively or negatively.

Definition of a function approaching a limit at infinity Suppose that f is defined near

infinity (or near plus infinity), meaning that there is some real number M such that

f is defined at every point in the interval (M,∞). Say that f approaches the limit L

near infinity (or near plus infinity), denoted

lim
x→∞

f(x) = L,

if

• for all ε > 0

• there is a real number M

• such that for all x,

x > M implies |f(x)− L| < ε.

Formulating precise definitions of

• limx→−∞ = L

• limx→∞ =∞

• limx→∞ = −∞

• limx→−∞ =∞ and

• limx→−∞ = −∞

are left as an exercise.

Here’s an example. We claim that limx→∞
x
x+1

= 1. To prove this entails showing that for

all ε > 0 there is an M such that x > M implies x/(x+ 1) ∈ (1− ε, 1 + ε). Let us initially

commit to choosing that M ≥ −1, so that for x > M we have x+ 1 > 0, and we do not run

into any issues with attempting to divide by 0.

Now for all x we have x < x + 1, and so for those x satisfying x + 1 > 0 we have

x/(x + 1) < 1; so our goal is to ensure x/(x + 1) > 1 − ε. But (again remembering that

1 +x > 0, and also using ε > 0) we have that x/(x+ 1) > 1− ε is equivalent to x > (1/ε)− 1.

So if we take M to be anything that is at least as large as both −1 and (1/ε)− 1, for example,

M = max{−1, (1/ε)− 1}, then x > M implies x/(x+ 1) ∈ (1− ε, 1 + ε), as required87.

Here are some general facts about limits at infinity, all of which you should be able to

prove, as the proofs are very similar to related statements about ordinary limits (limits near

a finite number).

87In fact, for ε > 0 it holds that (1/ε)− 1 > −1, so we could have simple said “take M = (1/ε)− 1”.
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Theorem 6.7. • If limx→∞ f(x) = L and limx→∞ g(x) = M , then

– limx→∞(f + g)(x) = L+M ;

– limx→∞(fg)(x) = LM ;

– limx→∞ cf(x) = cL; and

– limx→∞(f/g)(x) = L/M , provided M 6= 0.

• For n ∈ N ∪ {0},

– limx→∞ x
n =

{
1 if n = 0

∞ if n > 0
and

– limx→∞
1
xn

=

{
1 if n = 0

0 if n > 0.

• Suppose p(x) is the polynomial p(x) = xn + an−1x
n−1 + . . .+ a1x+ a0, and q(x) is the

polynomial q(x) = xm + bm−1x
m−1 + . . .+ b1x+ b0

88 (n,m ≥ 0). Then

lim
x→∞

p(x)

q(x)
=


1 if n = m

∞ if n > m

0 if n < m.

Proof: We’ll just prove two of the statements above, leaving the rest as exercises. First,

suppose limx→∞ f(x) = L and limx→∞ g(x) = M . We will consider limx→∞(fg)(x), and show

that it equals LM . We have

|(fg)(x)− LM | = |f(x)g(x)− Lg(x) + Lg(x)− LM |
≤ |f(x)− L||g(x)|+ |L||g(x)−M |.

Since limx→∞ g(x) = M we know that there is X1
89 such that x > X1 implies g(x) ∈

(M −1,M + 1), so |g(x)| ≤ |M |+ 1. Now let ε > 0 be given. Since limx→∞ f(x) = L we know

that there is X2 such that x > X2 implies |f(x)−L| < ε/(|M |+ 1). Since limx→∞ g(x) = M

we know that there is X3 such that x > X3 implies |g(x) −M | < ε/(|L| + 1)90. It follows

that if x > max{X1, X2, X3} then

|(fg)(x)− LM | ≤ |f(x)− L||g(x)|+ |L||g(x)−M |
≤ |f(x)− L|(|M |+ 1) + (|L|+ 1)|g(x)−M |
< ε/2 + ε/2

= ε,

88This corollary of the previous parts could have been formulated for more general polynomials, with

arbitrary (positive of negative) leading coefficients; but the statement would be messy, and in any case by

pulling out an appropriate constant, the ratio of two arbitrary polynomials can always be reduced to the

form presented above.
89We have to change notation slightly from the definition, since M is now being used for something else.
90We bound by ε/(|L|+ 1) here, rather than ε/|L|, to avoid the possibility of dividing by 0
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so limx→∞(fg)(x) = LM , as claimed.

Let’s also prove limx→∞ x
n =∞ if n > 0. We haven’t formulated the relevant definition,

but of course what this must mean is that for all M (and, if we wish, we can take this M to

be positive, or bigger than any fixed constant M0) there is an N such that x > N implies

xn > M .

Let’s commit to only considering M ≥ 1. If we take N = M , then x > N implies x > M ,

which in turn implies (because M ≥ 1) that xn > M , and we have the required limit.

Returning to the previous example, limx→∞
x
x+1

: that the limit exists and is 1 follows

easily, from the above theorem. Formulating an analogous result for limits near minus infinity

is left as an exercise.91

91For plenty of exercises on the kinds of limits introduced in this section, see Spivak, Chapter 5, questions

32-41.

144


	Limits
	Definition of a limit
	Examples of calculating limits from the definition
	Limit theorems
	Non-existence of limits
	One-sided limits
	Infinite limits, and limits at infinity


