
7 Continuity

Looking back at the ten functions that we used at the beginning of Section 6 to motivate the

definition of the limit, we see that

• some of them — f2, f3, f6, f7, f8, f9 and f10 — did not approach a limit near the

particular a’s under consideration,

• while the rest of them — f1, f4 and f5 — did.

These last three are definitely “nicer” near the particular a’s under consideration than the

first seven. But even among these last three, there is a further split:

• two of them — f4 and f5 — either have the property that the function is not defined

at a, or that the function is defined, but the function value at a is different from the

limit that the function is approaching near a,

• while the third — f1 — has the function defined at a, and the function value equally

the limit that the function is approaching near a.

This last is definitely “very nice” behavior near a; we capture precisely what’s going on with

the central definition of this section, that of continuity of a function at a point.

Definition of f being continuous at a A function f is continuous at a if

• f is defined at and near a (meaning there is ∆ > 0 such that all of (a−∆, a+ ∆)

is in Domain(f)), and

• limx→a f(x) = f(a).

The sense of the definition is that near a, small changes in the input to f lead to only

small changes in the output, or (quite informally), “near a, the graph of f can be drawn with

taking pen off paper”.

Unpacking the ε-δ definition of the limit, the continuity of a function f (that is defined at

and near a) at a can be expressed as follows:

• for all ε > 0

• there is δ > 0

• such that |x− a| < δ

• implies |f(x)− f(a)| < ε.

Note that this is just the definition of limx→a f(x) = f(a) with 0 < |x− a| < δ changed to

just |x− a| < δ, or x ∈ (a− δ, a+ δ); we can make this change because at the one new value

of x that is introduced into consideration, namely x = a, we certainly have |f(x)− f(a)| < ε

for all ε > 0, since in fact we have |f(x)− f(a)| = 0 at x = a. This ε-δ statement is often

taken as the definition of continuity of f at a.
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7.1 A collection of continuous functions

Here we build up a a large collection of functions that are continuous at all points of their

domains. We have done most of the work for this already, when we discussed limits.

Constant function Let f : R→ R be the constant function f(x) = c (where c ∈ R is some

constant). Since we have already established that limx→a f(x) = c = f(a) for all a, we

immediately get that f is continuous at all points in its domain.

Linear function Let g : R → R be the linear function g(x) = x. Since we have already

established that limx→a g(x) = a = g(a) for all a, we immediately get that g is continuous

at all points in its domain.

Sums, products and quotients of continuous functions Suppose that f and g are both

continuous at a. Then

• f + g is continuous at a (proof: f + g is certainly defined at and near a, if both f

and g are, and by the sum/product/reciprocal theorem for limits,

lim
x→a

(f + g)(x) = lim
x→a

f(x) + lim
x→a

g(x) = f(a) + g(a) = (f + g)(a));

• fg is continuous at a (proof: fg is certainly defined at and near a, if both f and

g are, and by the sum/product/reciprocal theorem for limits,

lim
x→a

(fg)(x) = lim
x→a

f(x) lim
x→a

g(x) = f(a)g(a) = (fg)(a));

• as long as g(a) 6= 0, 1/g is continuous at a (proof: that 1/g is defined at and near

a follows from Claim 6.2, and for the limit part of the continuity definition, we

have from the reciprocal part of sum/product/reciprocal theorem for limits that

lim
x→a

(1/g)(x) = 1/ lim
x→a

g(x) = 1/g(a) = (1/g)(a));

• as long as g(a) 6= 0, f/g is continuous at a (proof: combine the last two parts).

Polynomials If P is a polynomial function, then P is continuous at all reals. For any

particular polynomial, this follows by lots of applications of the the observations above

about sums and products of continuous functions, together with the continuity of

the constant and linear functions (to get things started); for polynomials in general

this follows from the same ingredients as for the particular case, together with lots of

applications of prove by induction.

Rational functions If R is a rational function, then R is continuous at all points in its

domain; so in particular, if R = P/Q where P,Q are polynomials and Q is not the

constantly zero polynomial, then R is continuous at all reals x for which Q(x) is not 0.

This is an application of the continuity of polynomials, as well as the reciprocal part of

the sum/product/reciprocal observation.
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This gives us already a large collection of continuous functions. The list becomes even

larger when we include the trigonometric functions:

Working assumption The functions sin and cos are continuous at all reals.92

This is a reasonable assumption; if we move only slightly along the unit circle from a point

(x, y) = (cos θ, sin θ), the coordinates of our position only move slightly, strongly suggesting

that sin and cos are both continuous.

Armed with this working assumption, we can for example immediately say (appealing to

our previous observations) that

f(x) =
(x2 + 1) sinx− x(cosx)2

2(x+ 1) sinx

is continuous, as long as x 6= −1 or x 6= nπ for n ∈ Z (i.e., it’s continuous as long as it’s

defined); indeed, f is nothing more than a combination of known continuous functions, with

the means of combination being addition, subtraction, multiplication and division, all of

which we have discussed vis a vis continuity.

What about a superficially similar looking function like f(x) = sin(1/x)? This is clearly

not continuous at x = 0 (it is not even defined there), but it seems quite clear that is it

continuous at all other x. None of the situations we have discussed so far apply to this

particular function, though, because it is constructed from simpler functions not by addition,

subtraction, multiplication and division, but rather by composition.

We could try to compute limx→a sin(1/x) and see if it is equal to sin(1/a), but that

would almost certainly be quite messy. Instread, we appeal to one more general result about

continuity:

Theorem 7.1. If f, g are functions, and if g is continuous at a and f is continuous at g(a)

(so in particular, g is defined at and near a, and f is defined at and near g(a), then (f ◦ g) is

continuous at a.

Proof: Unlike previous proofs involving continuity, this one will be quite subtle. Already

we have to work a little to verify that (f ◦ g) is defined at and near a. That it is defined

at a is obvious. To see that it is defined near a, note that f is continuous at g(a), so there

is some ∆′ > 0 such that f is defined at all points in the interval (g(a) − ∆′, g(a) + ∆′).

We want to show that there is a ∆ > 0 such that for all x ∈ (a − ∆, a + ∆), we have

g(x) ∈ (g(a)−∆′, g(a)+∆′) (so that then for all x ∈ (a−∆, a+∆), we have that (f ◦g)(x) is

defined). But this follows from the continuity of g at a: apply the ε-δ definition of continuity,

with ∆′ as the input tolerance ε, and take the output δ to be ∆.

92This is a “working assumption” rather than a theorem; we haven’t yet formally defined the trigonometric

functions, and without a precise and formal definition of the functions, there is no point in even attempting a

proof of continuity.
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Next we move on to showing that (f ◦ g)(x)→ f(g(a)) as x→ a. Given ε > 0, we want

to say that if x is sufficiently close to a then |f(g(x))− f(g(a))| < ε.

Here’s the informal idea: by choosing x close enough to a, we can make g(x) close to g(a)

(since g is continuous at a). But then, since g(x) is close to g(a), we must have f(g(x)) close

to f(g(a)) (since f is continuous at g(a)).

Formally: given ε > 0 there is δ′ > 0 such that |X−g(a)| < δ′ implies |f(X)−f(g(a))| < ε

(this is applying the definition of the continuity of f at g(a), with input ε).

Now use that δ′ as the input for the definition of g being continuous at a, i.e., for

g(x) → g(a) as x → a: we get that there is some δ > 0 such that |x − a| < δ implies

|g(x)− g(a)| < δ′, which, by definition of δ′, implies |f(g(x))− f(g(a))| < ε.93

From this theorem, we can conclude that any function that is built from known contin-

uous functions (such as polynomial and rational functions, or sin and cos) using addition,

subtraction, multiplication, division and composition, is continuous at every point in its

domain. So, for example, all of

• sin(1/x)

• x sin(1/x)

• sin3(2x2 + cosx)− 3x
cos2 x−sin(sinx)

are all continuous wherever they are defined.

What about discontinuous functions? It’s easy to come up with examples of functions

that are discontinuous at sporadic points:

• f(x) = x/|x| is discontinuous at x = 0 (it’s not defined at 0, but even if we augment

the definition of f to give it a value, it will still be discontinuous at 0, since limx→0 f(x)

does not exist);

• f(x) = [x]94 is defined for all reals, but is discontinuous at infinitely many places,

specifically at the infinitely many integers. Indeed, for any integer t there are values of

x arbitrarily close to t for which f(x) = t (any x slightly larger than t), and values of x

arbitrarily close to t for which f(x) = t− 1 (any x slightly smaller than t), so it’s an

easy exercise that limx→t f(x) doesn’t exist;

• f(x) = [1/x] is defined for all reals other than 0. Arbitrarily close to 0, it is discontinuous

at infinitely many points (so there is a “clustering” of discontinuities close to 0). Indeed,

f is easily seen to be discontinuous at 1 (across which it jumps from 2 to 1), at 1/2

(across which it jumps from 3 to 2), and more generally at ±1/k for every integer k.

93There were only two things we could have used in this proof: the continuity of f at g(a) and the continuity

of g at a. The only question was, which one to use first? Using the continuity of g at a first would have lead

us nowhere.
94“[x]” is the floor, or integer part, of x — the largest integer that is less than or equal to x. So for example

[2.1] = [2.9] = [2] = 2 and [−0.5] = [−.001] = [−1] = −1.
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There are even easy examples of functions that has R as its domain, and is discontinuous

everywhere. One such is the Dirichlet function f10 defined earlier:

f10(x) =

{
1 if x is rational

0 if x is irrational.

Indeed, fix a ∈ R. We claim that limx→a f10(x) does not exist. Let L be given. It must be

the case that at least one of |0−L|, |1−L| is greater than, say, 1/10. Suppose |1−L| > 1/10.

Take ε = 1/10. Given any δ > 0, in the interval (a− δ, a+ δ) there must be95 some irrational

x (other than a, which may or may not be irrational; but we don’t consider a when checking

for a limit existing or not). We have f10(x) = 1, so |f10(x)− L| > 1/10 = ε. If on the other

hand |0 − L| > 1/10, again take ε = 1/10. Given any δ > 0, in the interval (a − δ, a + δ)

there must be96 some rational x (other than a, which may or may not be rational). We

have f10(x) = 0, so |f10(x)− L| > 1/10 = ε. In either case we have the necessary witness to

limx→a f10(x) 6= L, and since L was arbitrary, the limit does not exist.

A rather more interesting example is the Stars over Babylon function.97 We define it here

just on the open interval (0, 1):

f(x) =

{
1/q if x is rational, x = p/q, p, q ∈ N, p, q have no common factors

0 if x is irrational.

Here’s the graph of the Stars over Babylon function:

It takes the value 1/2 at 1/2; at 1/3 and 2/3 it takes the value 1/3; at 1/4 and 3/4 it takes

the value 1/4 (but not at 2/4; that was already covered by 1/2); at 1/5, 2/5, 3/5 and 4/3 it

95Musn’t there be?
96Again, musn’t there be?
97So named by John Conway, for it’s unusual graph; it is also called Thomae’s function, or the popcorn

function.
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takes the value 1/5; at 1/6 and 5/6 it takes the value 1/6 (but not at 2/6, 3/6 or 4/6; these

were already covered by 1/3, 1/2 and 2/3); et cetera.

We claim that for all a ∈ (0, 1), f approaches a limit near a, and specifically f approaches

the limit 0. Indeed, given a ∈ (0, 1), and given ε > 0, we want to find a δ > 0 such that

0 < |x− a| < δ implies |f(x)| < ε.

Now there are only finitely many x ∈ (0, 1) with f(x) ≥ ε, namely

1/2, 1/3, 2/3, 1/4, 3/4, . . . , 1/n, . . . , (n− 1)/n

where 1/n is the largest natural number with 1/n ≥ ε. There are certainly no more than n2

of these numbers; call them x1, x2, . . . , xm, written in increasing order. As long as none of

these numbers satisfy 0 < |x− a| < δ, then for x satisfying this bound we have |f(x)| < ε.

So, let δ be any positive number that is smaller than

• the distance from a to 0

• the distance from a to 1 and

• the distance from a to the closest of the xi to a (other than a itself, which may or may

not be one of the xi; but we don’t care, because we don’t consider a when checking for

a limit existing or not).

If 0 < |x− a| < δ, then, because of the first two clauses above, we have that x ∈ (0, 1), so

in the domain of f ; and, because of the third clause, the only number in (a− δ, a+ δ) that

could be among the xi’s is a itself; so, combining, if 0 < |x− a| < δ then x is not among the

xi’s, so |f(x)| < ε.

This completes the proof that limx→a f(x) = 0. An interesting consequence brings us

back to the topic at hand, continuity: since f(x) = 0 exactly when x is irrational,

Stars over Babylon is continuous at all irrationals, discontinuous at all rationals.

7.2 Continuity on an interval

Continuity at a point can say something about a function on an interval. Indeed, we have

the following extremely useful fact about functions:

Claim 7.2. Suppose f is continuous at a, and that f(a) 6= 0. Then there is some interval

around a on which f is non-zero. Specifically, there is a δ > 0 such that

• if f(a) > 0, then for all x ∈ (a− δ, a+ δ), f(x) > f(a)/2, and

• if f(a) < 0, then for all x ∈ (a− δ, a+ δ), f(x) < f(a)/2.
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We won’t give a proof of this, as it is an immediate corollary of Claim 6.2, taking

M = f(a).

This moves us nicely along to our next main point, which is thinking about what can be

said about a function that is known to be continuous not just at a point, but on an entire

interval. We start with open intervals.

• Say that f : (a, b)→ R is continuous on (a, b) if it is continuous at all c ∈ (a, b);

• say that f : (−∞, b)→ R is continuous on (−∞, b) if it is continuous at all c ∈ (−∞, b);

• say that f : (a,∞)→ R is continuous on (a,∞) if it is continuous at all c ∈ (a,∞).

So, for example, the function f(x) = 1/(x− 1)(x− 2) is continuous on the intervals (−∞, 1),

(1, 2) and (2,∞).

For functions defined on closed intervals, we have to be more careful, because we cannot

talk about continuity at the end-points of the interval. Instead we introduce notions of

one-sided continuity, using our previous notions of one-sided limits:

Definition of f being right continuous or continuous from above at a: A function

f is right continuous or continuous from above at a if limx→a+ f(x) = f(a).

Definition of f being left continuous or continuous from below at b: A function f

is left continuous or continuous from below at b if limx→b− f(x) = f(b).

• Say that f : [a, b]→ R is continuous on [a, b] if it is continuous at all c ∈ (a, b), is right

continuous at a and is left continuous at b;

• say that f : (−∞, b]→ R is continuous on (−∞, b] if it is continuous at all c ∈ (−∞, b)
and is left continuous at b;

• say that f : [a,∞)→ R is continuous on [a,∞) if it is continuous at all c ∈ (a,∞) and

is right continuous at a;

• say that f : [a, b)→ R is continuous on [a, b) if it is continuous at all c ∈ (a, b) and is

right continuous at a;

• say that f : (a, b]→ R is continuous on (a, b] if it is continuous at all c ∈ (a, b) and is

left continuous at b.

So, for example (easy exercises),

• the function that is defined by f(x) = x/|x| away from 0 and is defined to be 1 at 0 is

continuous on the intervals (−∞, 0) and [0,∞); the function, and

• f(x) = [x] is continuous on all intervals of the form [k, k + 1), k ∈ Z.
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An important fact about right and left continuity is that the process of checking continuity

at a is equivalent to the process of checking right and left continuity; this is an immediate

corollary of Theorem 6.6:

Claim 7.3. f is continuous at a if and only if it is both right continuous and left continuous

at a.

A quick corollary of this gives us another way to form new continuous functions from old:

splicing. Suppose that f and g are defined on (a, b), and c ∈ (a, b) has f(c) = g(c). Define a

new function h : (a, b)→ R by98

h(x) =

{
f(x) if x ≤ c

g(x) if x ≥ c

Corollary 7.4. (of Claim 7.3) If f and g are both continuous at c, then h is continuous at

c (and so if f, g are both continuous on (a, b), so is h).

Proof: On (a, c] h agrees with f . f is continuous at c, so is left continuous at c, and so h is

left continuous at c. On [c, b) h agrees with g, so right continuity of h at c follows similarly

from continuity of g at c. Since h is both right and left continuous at c, it is continuous at

c.

As an example, consider the function h(x) = |x|. This is a splice of f(x) = −x and

g(x) = x, the splicing done at 0 (where f and g agree). Both f and g are continuous on R,

so h is continuous on R.

7.3 The Intermediate Value Theorem

An “obvious” fact about continuous functions is that if f is continuous on [a, b], with f(a) < 0

and f(b) > 0, then there must be some c ∈ (a, b) such that f(c) = 0; a continuous function

cannot “jump” over the x-axis.

But is this really obvious? We think of continuity at a point as meaning that the graph

of the function near that point can be drawn without taking pen off paper, but the Stars

over Babylon function, which is continuous at each irrational, but whose’s graph near any

irrational certainly can’t be drawn without taking pen off paper, show us that we have to be

careful with that intuition. The issue here, of course, is that when we say that a continuous

function cannot jump over the x-axis, we are thinking about functions which are continuous

at all points in an interval.

Here is a stronger argument for the “obvious” fact not necessarily being so obvious.

Suppose that when specifying the number system we work with, we had stopped with axiom

P12. Just using axioms P1-P12, we have a very nice set of numbers that we can work with —

the rational numbers Q — inside which all usual arithmetic operations can be performed.

98Notice that there’s no problem with the overlap of clauses here, since f(c) = g(c).
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If we agreed to just do our mathematics in Q, we could still define functions, and still

define the notion of a function approaching a limit, and still define the notion of a function

being continuous — all of those definitions relied only on arithmetic operations (addition,

subtraction, multiplication, division, comparing magnitudes) that make perfect sense in Q.

All the theorems we have proven about functions, limits and continuity would still be true.

Unfortunately, the “obvious” fact would not be true! The function f : Q→ Q given by

f(x) = x2 − 2 is a continuous function, in the Q-world, has f(0) = −2 < 0 and f(2) = 2 > 0,

but in the Q-world there is no x ∈ (0, 2) with x2 = 2 (as we have proven earlier), and so there

is no x ∈ (0, 2) with f(x) = 0: f goes from negative to positive without ever equalling 0.

So, if our “obvious” fact is true, it is as much a fact about real numbers as it is a fact about

continuity, and it’s proof will necessarily involve an appeal to the one axiom we introduced

after P1-P12, namely the completeness axiom.

The “obvious” fact is indeed true in the R-world, and goes under a special name:

Theorem 7.5. (Intermediate Value Theorem, or IVT) Suppose that f : [a, b] → R is a

continuous function defined on a closed interval. If f(a) < 0 and f(b) > 0 then there is some

c ∈ (a, b) (so a < c < b) with f(c) = 0.

We’ll defer the proof for a while, and first make some remarks. The first remark to make

is on the necessity of the hypothesis.99

• Is IVT still true if f is not continuous on all of [a, b]? No. Consider

f(x) =

{
−1 if x < 0

1 if x ≥ 0.

Viewed as, for example, a function on the closed interval [−2, 2], f is continuous at all

points on the interval [−2, 2] except at 0. Also, f(−2) < 0 while f(2) > 0. But there is

no x ∈ (−2, 2) with f(x) = 0.

• What if f is continuous on all of (a, b), just not at a and/or b? Still No. Consider

f(x) =

{
−1 if x = 0

1/x if x > 0.

Viewed as, for example, a function on the closed interval [0, 1], f is continuous at all

points on the interval (0, 1). It’s also left continuous at 1. The only place where (right)

continuity fails is at 0. Also, f(0) < 0 while f(1) > 0. But there is no x ∈ (0, 1) with

f(x) = 0.

99Most important theorem come with hypotheses — conditions that must be satisfied in order for the

theorem to be valid (for the IVT, the hypothesis is that f is continuous on the whole closed interval [a, b]).

Most of the theorems we will see have been refined over time to the point where the hypotheses being assumed

are the bare minimum necessary to make the theorem true. As such, it should be possible to come up with

counterexamples to the conclusions of these theorems, whenever the hypothesis are even slightly weakened.

You should get into the habit of questioning the hypotheses of every big theorem we see, specifically asking

yourself “is this still true if I weaken any of the hypotheses?”. Usually, it will not be true anymore.
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A second remark is that the IVT quickly gives us the existence of a unique square root of

any positive number:

Claim 7.6. For each a ≥ 0 there is a unique number a′ ≥ 0 such that (a′)2 = a. We refer to

this number as the square root of a, and write it either as
√
a or as a1/2.

Proof: If a = 0 then we take a′ = 0. This is the unique possibility, since as we have earlier

proven, if a′ 6= 0 then (a′)2 > 0, so (a′)2 6= 0.

Suppose a > 0. Consider the function fa : [0, a+ 1]→ R given by fa(x) = x2 − a. This

is a continuous function at all points on the interval, as we have previously proven. Also

fa(0) = −a < 0 and fa(a+1) = (a+1)2−a = a2 +a+1 > 0. So by IVT, there is a′ ∈ (0, a+1)

with fa(a
′) = 0, that is, with (a′)2 = a.

To prove that this a′ is the unique possibility for the positive square root of a, note that

if 0 ≤ a′′ < a′ then 0 ≤ (a′′)2 < (a′)2 (this was something we proved earlier), so (a′′)2 6= a,

while if 0 ≤ a′ < a′′ then 0 ≤ (a′)2 < (a′′)2, so again (a′′)2 6= a. Hence a′ is indeed unique.

We can go further, with essentially no extra difficulty:

Claim 7.7. Fix n ≥ 2 a natural number. For each a ≥ 0 there is a unique number a′ ≥ 0

such that (a′)n = a. We refer to this number as the nth root of a, and write it either as n
√
a

or as a1/n.

Proof: If a = 0 then we take a′ = 0. This is the unique possibility, since if a′ 6= 0 then

(a′)n 6= 0.

Suppose a > 0. Consider the function fa : [0, a+ 1]→ R given by fa(x) = xn − a. This is

a continuous function. Also fa(0) = −a < 0 and (using the binomial theorem)

fa(a+1) = (a+1)n−a = an+

(
n

n− 1

)
an−1+· · ·+

(
n

n− k

)
an−k+· · ·+

((
n

1

)
− 1

)
a+1 > 0.

So by IVT, there is a′ ∈ (0, a+ 1) with fa(a
′) = 0, that is, with (a′)n = a.

To prove that this a′ is the unique possibility for the positive nth root of a, note that if

0 ≤ a′′ < a′ then 0 ≤ (a′′)n < (a′)n while if 0 ≤ a′ < a′′ then 0 ≤ (a′)n < (a′′)n.

Define, for natural numbers n ≥ 2, a function fn : [0,∞) → [0,∞) by x 7→ x1/n. The

graph of the function f2 is shown below; it looks like it is continuous on its whole domain,

and we would strongly expect fn to be continuous on all of [0,∞), too.
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Claim 7.8. For all n ≥ 2, n ∈ N, the function fn is continuous on [0,∞).

Proof: As a warm=up, we deal with n = 2. Fix a > 0. Given ε > 0 we want to find δ > 0

such that |x− a| < δ implies |x1/2 − a1/2| < ε.

As usual, we try to manipulate |x1/2 − a1/2| to make an |x − a| pop out. The good

manipulation here is to multiply above and below by |x1/2 + a1/2|, and use the difference-of-

two-squares factorization, X2 − Y 2 = (X − Y )(X + Y ), to get

|x1/2 − a1/2| = |x1/2 − a1/2| |x
1/2 + a1/2|
|x1/2 + a1/2|

=
|x1/2 − a1/2||x1/2 + a1/2|

|x1/2 + a1/2|

=
|(x1/2 − a1/2)(x1/2 + a1/2|

|x1/2 + a1/2|

=
|x− a|

|x1/2 + a1/2|

=
|x− a|

x1/2 + a1/2
,

the last equality valid since x1/2 ≥ 0, a1/2 > 0.

Now x1/2 ≥ 0 so x1/2 + a1/2 ≥ a1/2 and sp

|x1/2 − a1/2| ≤ |x− a|
a1/2

.

Choose any δ at least as small as the minimum of a (to make sure that |x− a| < δ implies

x > 0, so x is in the domain of f2) and a1/2ε. Then |x− a| < δ implies

|x1/2 − a1/2| ≤ |x− a|
a1/2

< ε.

That proves continuity of f2 at all a > 0; right continuity at 0 (i.e., limx→a+ x1/2 = 0) is left

as an exercise.

For the case of general n, we replace X2 − Y 2 = (X − Y )(X + Y ) with

Xn − Y n = (X − Y )(Xn−1 +Xn−2Y + · · ·+XY n−2 + Y n−1).

In the case a > 0, repeating the same argument as in the case n = 2 leads to

|x1/n − a1/n| = |x− a|
(x1/n)n−1 + (x1/n)n−2(a1/n) + · · ·+ (x1/n)(a1/n)n−2 + (a1/n)n−1

≤ |x− a|
(a1/n)n−1

,

and so continuity of fn at a > 0 follows as before, this time taking any δ > 0 at least as small

as the minimum of a and (a1/n)n−1ε. Again, right continuity at 0 is left as an exercise.

We know that a1/2 cannot make sense (i.e., cannot be defined) for a < 0: if there was a

real number a1/2 for negative a, we would have (a1/2)2 ≥ 0 (since squares of reals are always
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positive), but also (a1/2)2 = a < 0, a contradiction. By the same argument, we don’t expect

a1/n to make sense for negative a for any even natural number n.

But for odd n, we do expect that a1/n should make sense for negative a, and that is indeed

the case.

Claim 7.9. Fix n ≥ 3 an odd natural number. For each a ∈ R there is a unique number

a′ ∈ R such that (a′)n = a. We refer to this number as the nth root of a, and write it either

as n
√
a or as a1/n.

Extending the function fn defined above to all real numbers, we have that fn : R → R
given by x 7→ x1/n is continuous for all reals.

We will not prove this, but rather leave it as an exercise. The main point is that if

we define, for odd integer n and for any real a, the (continuous) function fa : R → R via

fa(x) = xn − a, then we can find a′ < a′′ for which fa(a
′) < 0 < fa(a

′′). Once we have found

a′, a′′ (which is a little tricky), the proof is very similar to the proofs we’ve already seen.

But in fact we will prove something more general than the existence of a′, a′′. From the

section on graphing function, we have a sense that if P (x) is an odd-degree polynomial of

degree n, for which the coefficient of xn is positive, then for all sufficiently negative numbers

x we have P (x) < 0, while for all sufficiently positive x we have P (x) > 0. Since P is

continuous, that would say (applying the IVT on any interval [a′, a′′] where a′ is negative

and satisfies P (a′) < 0, and a′′ is positive and satisfies P (a′′) > 0) that there is some a ∈ R
with P (a) = 0 (and in particular applying this to P (x) = xn − a yields an nth root of a for

every real a).

Claim 7.10. Let P (x) = xn + a1x
n−1 + · · ·+ an−1x+ an be a polynomial, with n odd. There

are numbers x1 and x2 such that P (x) < 0 for all x ≤ x1, and P (x2) > 0 for all x ≥ x2. As

a consequence (via IVT) there is a real number c such that P (c) = 0.

Proof: The idea is that for large x the term xn “dominates” the rest of the polynomial — if

x is sufficiently negative, then xn is very negative, so much so that it remains negative after

a1x
n−1 + · · · + an−1x + an is added to it; while if x is sufficiently positive, then xn is very

positive, so much so that it remains positive after a1x
n−1 + · · ·+ an−1x+ an (which may itself

be negative) is added to it.

To formalize this, we use the triangle inequality to bound |a1x
n−1 + · · · + an−1x + an|.

Setting M = |a1|+ |a2|+ · · ·+ |an|+ 1 (the +1 at the end to make sure that M > 1), and

considering only those x for which |x| > 1 (so that 1 < |x| < |x|2 < |x|3 < · · · ), we have

|a1x
n−1 + · · ·+ an−1x+ an| ≤ |a1x

n−1|+ · · ·+ |an−1x|+ |an|
= |a1||x|n−1 + · · ·+ |an−1||x|+ |an|
≤ |a1||xn−1|+ · · ·+ |an−1||x|n−1 + |an||x|n−1

< M |x|n−1.
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It follows that for any x satisfying |x| > 1,

xn −M |x|n−1 < P (x) < xn +M |x|n−1

Now take x2 = 2M (note |x2| > 1). For x ≥ x2 (so in particular x > 0) we have

P (x) > xn −M |x|n−1 = xn −Mxn−1 = xn−1(x−M) ≥ 2n−1Mn > 0

(using x−M ≥M in the next-to-last inequality).

On the other hand, taking x1 = −2M (note |x1| > 1) we have that for x ≤ x1,

P (x) < xn +M |x|n−1 = xn +Mxn−1 = xn−1(x+M) ≤ −2n−1Mn < 0

(note that in the first equality above, we use |x|n−1 = xn−1, valid since n− 1 is even).

If the coefficient of xn in P is not 1, but some positive real a0 > 0, then an almost identically

proof works to demonstrate the same conclusion (P (x) is negative for all sufficiently negative

x, and positive for all sufficiently positive x, and so P (c) = 0 for some c); and if the coefficient

of xn in P is instead some negative real a0 < 0 then, applying the theorem just proven to the

polynomial −P , we find that P (x) is positive for all sufficiently negative x, and negative for

all sufficiently positive x, and so again by the IVT P (c) = 0 for some c. In other words:

every odd degree polynomial has a real root.

Note that no such claim can be proved for even n; for example, the polynomial P (x) = x2 + 1

never takes the value 0. We will return to even degree polynomials when we discuss the

Extreme Value Theorem.

We now turn to the proof of IVT. As we have already observed, necessarily the proof will

involve the completeness axiom. The informal idea of the proof is: “the first point along the

interval [a, b] where f stops being negative, must be a point at which f is zero”. We will

formalize this by considering the set of numbers x such that f is negative on the entire closed

interval from a to x. This set is non-empty (a is in it), and is bounded above (b is an upper

bound), so by completeness (P13), the set has a least upper bound. We’ll argue that that

least upper bound is strictly between a and b, and that that function evaluates to 0 at that

point.

Proof (of Intermediate Value Theorem): Let A ⊆ [a, b] be

{x ∈ [a, b] : f is negative on [a, x]}.

We have a ∈ A (since f(a) < 0), so A is not empty. We have that b is an upper bound for a

(since f(b) > 0), so by the completeness axiom (P13), A has a least upper bound, call it c.

Recall that this means that

• c is an upper bound for A (x ≤ c for all x ∈ A), and that
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• c is the least such number (if c′ is any other upper bound then c′ ≥ c).

We will argue that a < c < b, and that f(c) = 0. That c > a follows from left continuity of f

at a, and f(a) < 0 (the proof that if f is continuous and negative at a, then there’s some

δ > 0 such that f is negative on all of (a− δ, a+ δ), can easily be modified to show that if f

is right continuous and negative at a, then there’s some δ > 0 such that f is negative on all

of [a, a + δ), so certainly a + δ/2 ∈ A). Similarly, that c < b follows from right continuity

of f at b, and f(b) > 0 (there’s δ > 0 such that f is positive on all of (b− δ, b], so certainly

b− δ/2 is an upper bound for A).

Next we argue that f(c) = 0, by showing that assuming f(c) > 0 leads to a contradiction,

and similarly assuming f(c) < 0 leads to a contradiction.

Suppose f(c) > 0. There’s δ > 0 such that f is positive on (c− δ, c+ δ), so c− δ/2 is an

upper bound for A — no number in [c− δ/2, c] can be in A, because f is positive at all these

numbers — contradicting that c is the least upper bound for A.

Suppose f(c) < 0. There’s δ > 0 such that f is negative on (c − δ, c + δ). In fact, f is

negative on all of [a, c+ δ) — if f was positive at any c′ < c, c′ would be an upper bound on

A, contradicting that c is the least upper bound for A — and so c+ δ/2 ∈ A, contradicting

that c is even an upper bound for A.

There are a few obvious variants of the Intermediate Value Theorem that are worth

bearing in mind, any require virtually no work to prove once we have the version we have

already proven.

• If f is continuous on [a, b], and if f(a) > 0, f(b) < 0, then there is some c ∈ (a, b) with

f(c) = 0. (To prove this, apply the IVT as we have proven it to the function −f ; the c

thus produced has (−f)(c) = 0 so f(c) = 0.)

• If f is continuous on [a, b], with f(a) 6= f(b), and if t is any number that lies between

f(a) and f(b), then there is c ∈ (a, b) with f(c) = t. (To prove this in the case where

f(a) < f(b), apply the IVT as we have proven it to the function x 7→ f(x) − t, and

to prove it in the case where f(a) > f(b), apply the IVT as we have proven it to the

function x 7→ t− f(x).)

• If f is a continuous function on an interval, and f takes on two different values, then it

takes on all values between those two values.100 (To prove this, let a and b be the two

inputs on which f is seen to take on different values, where, without loss of generality,

a < b, and apply the version of the IVT in the second bullet point above to f on the

interval [a, b].)

7.4 The Extreme Value Theorem

We begin this section with some definitions. In each of these definitions, we want to think

about a function not necessarily on its whole natural domain, but rather on some specific

100This is often taken as the statement of the Intermediate Value Theorem.
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subset of the domain. For example, we may wish to consider the function x 7→ 1/x not at

being defined on all reals except 0, but rather being defined on all positive reals, or on the

open interval (0, 1). One way to do that is to artificially define the function only on the

particular set of reals that we are interested in; but this is a little restrictive, as we may want

to think about the same function defined on many different subsets of its natural domain.

The approach taken in this definitions, while it may seem a little wordy at first, allows us

this flexibility, and will be very useful in other situations too.

Definition of a function being bounded from above f is bounded from above on a sub-

set S of Domain(f) if there is some number M such that f(x) ≤M for all x ∈ S; M is

an upper bound for the function on S.

Definition of a function being bounded from below f is bounded from below on S if

there is some number m such that m ≤ f(x) for all x ∈ S; m is a lower bound for the

function on S.

Definition of a function being bounded f is bounded on S if it is bounded from above

and bounded from below on S.

Definition of a function achieving its maximum f achieves its maximum on S if there

is a number x0 ∈ S such that f(x) ≤ f(x0) for all x ∈ S. (Notice that this automatically

implies that f is bounded from above on S: f(x0) is an upper bound.)

Definition of a function achieving its mimimum f achieves its minimum on S if there

is a number x0 ∈ S such that f(x0) ≤ f(x) for all x ∈ S. (Notice that this automatically

implies that f is bounded from below on S: f(x0) is a lower bound.)

It’s an easy exercise that f is bounded on S if and only if there is a single number M such

that |f(x)| < M for all x ∈ S.

Basically anything can happen vis a vis upper and lower bounds, depending on the specific

choice of f and S. For example:

• f(x) = 1/x is bounded on [1, 2], and achieves both maximum and minimum;

• f(x) = 1/x is bounded on (1, 2), but achieves neither maximum nor minimum;

• f(x) = 1/x is bounded on [1, 2), does not achieve its maximum, but does achieve its

minimum;

• f(x) = 1/x is not bounded from above on (0, 2), is bounded from below, and does not

achieve its minimum;

• f(x) = 1/x is not bounded from above or from below on its natural domain.

The second important theorem of continuity (IVT was the first) says that a continuous

function on a closed interval is certain to be as well-behaved as possible with regards bounding.
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Theorem 7.11. (Extreme Value Theorem, or EVT for short) Suppose f : [a, b] → R is

continuous. Then

• f is bounded on [a, b]101, and

• f achieves both its maximum and minimum on [a, b].

We will see many applications of the EVT throughout this semester and next, but for the

moment we just give one example. Recall that earlier we used the IVT to prove that if P is

an odd degree polynomial then there must be c with P (c) = 0, and we observed that no such

general statement could be made about even degree polynomials. Using the EVT, we can say

something about the behavior of even degree polynomials.

Claim 7.12. Let P (x) = xn + a1x
n−1 + · · · + an−1x + an be a polynomial, with n even.

There is a number x? such that P (x?) is the minimum of P on (−∞,∞), that is, such that

p(x?) ≤ p(x) for all real x.

Proof: Here’s the idea: we have p(0) = an. We’ll try to find numbers x1 < 0 < x2 such that

P (x) > an for all x ≤ x1 and for all x ≥ x2. (?)

We then apply the EVT on the interval [x1, x2] to conclude that there is a number x? ∈ [x1, x2]

such that P (x?) ≤ P (x) for all x ∈ [x1, x2]. Now since 0 ∈ [x1, x2], we have P (x?) ≤ P (0) = an,

and so also P (x?) ≤ P (x) for all x ∈ (−∞, x1] and [x2,∞) (using (?)). So, P (x?) ≤ P (x) for

all x ∈ (−∞,∞).

To find x1, x2, we use a very similar strategy to the one used in the proof of Claim 7.10,

to show that if M = |a1| + · · · + |an| + 1 then there are numbers x1, x2 with x1 < 0 < x2

such that P (x) ≥ 2n−1Mn for all x ≤ x1 and for all x ≥ x2 (the details of this step are left as

an exercise).

Because M is positive and at least 1, and because n is at least 2, we have

2n−1Mn ≥M ≥ |an|+ 1 ≥ an + 1 > an,

and so we are done.

We now turn to the proof of the Extreme Value Theorem. We begin with a preliminary

observation, that if f is continuous at a point c then it is “locally bounded”: there is a δ > 0

such that f is bounded above, and below, on (a− δ, a+ δ). Indeed, apply the definition of

continuity at c with ε = 1 in order to get such a δ, with specifically f(c)−1 < f(x) < f(c) + 1

for all x ∈ (a− δ, a+ δ).

The intuition of the proof we give is that we can stringing together local boundedness

at each point in the interval [a, b] to get that f is bounded on [a, b]. We have to do it

101In other words, a continuous function on a closed interval cannot “blow up” to infinity (or negative

infinity).
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carefully, though, to avoid the upper bounds growing unbounded larger, and the lower bounds

unbounded smaller. The approach will be similar to our approach to the IVT: this time, we

find the longest closed interval starting at a on which f is bounded, and try to show that the

interval goes all the way to b, by arguing that it it falls short of b, getting only as far as some

c < b, one application of “local boundedness” allows us to stretch the interval a little further,

contradicting that the interval stopped at c.

Proof (of Extreme Value Theorem): We start with the first statement, that a function f

that is continuous on [a, b] is bounded on [a, b]. We begin by showing that f is bounded from

above. Let

A = {x : a ≤ x ≤ b and f is bounded above on [a, x]}.

We have that a ∈ A and that b is an upper bound for A, so supA := α exists.

We cannot have α < b. For suppose this was the case. Since f is continuous at α, it is

bounded on (α− δ, α + δ) for some δ > 0. Now we consider two cases.

Case 1, α ∈ A Here f is bounded on [a, α] (by M1, say) and also on [α − δ/2, α + δ/2]

(by M2, say), so it is bounded on [a, α + δ/2] (by max{M1,M2}), so α + δ/2 ∈ A,

contradicting that α is the least upper bound of A.

Case 2, α 6∈ A Here it must be that some c ∈ (α− δ, α) is in A; if not, α− δ would be an

upper bound for A, contradicting that α is the least upper bound of A. As in Case 1,

f is bounded on [a, c] and also on [c, α + δ/2], so it is bounded on [a, α + δ/2], again a

contradiction.

We conclude that α = b, so it seems like we are done; but, we wanted f bounded on [a, b],

and supA = b doesn’t instantly say this, because the supremum of a set doesn’t have to be

in the set.102 So we have to work a little more.

Since f is right continuous at b, f is bounded on (b− δ, b] for some δ > 0. If b 6∈ A, then,

since b = supA, we must have x0 ∈ A for some x0 ∈ (b− δ, b) (otherwise b− δ would work as

an upper bound for A). So f is bounded on [a, x0] and also on [x0, b], so it is bounded on

[a, b], so b ∈ A, a contradiction. So in fact b ∈ A, and f is bounded from above on [a, b].

and since f bounded on [a, x0] for some x0 ∈ (b− δ, b) (our fact again — b 6∈ A), have f

bdd on [a, b].

A similar proof, using the equivalent form of the Completeness axiom introduced earlier

(a non-empty set with a lower bound has a greatest lower bound) can be used to show that f

is also bounded from below on [a, b]; or, we can just apply what we have just proven about

upper bounds to the (continuous) function −f defined on [a, b] — −f has some upper bound

M on [a, b], so −M is a lower bound for f on [a, b].

102A easy example: sup(0, 1) = 1 which is not in (0, 1). An example more relevant to this proof: consider

g(x) = 1/(1− x) on [0, 1), and g(1) = 0 at 1. If A = {x : g bounded on [0, x]}, then supA = 1 but 1 6 inA.

The problem here of course is that g is not continuous at 1
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We now move on to the second part of the EVT: if f : [a, b]→ R is continuous, it achieves

both its maximum and its minimum; there are y, z ∈ [a, b] such that f(z) ≤ f(x) ≤ f(y) for

all x ∈ [a, b]. We just show that f achieves its maximum; the trick of applying this result to

−f will again work to show that f also achieves its minimum.

Consider A = {f(x) : x ∈ [a, b]} (notice that now we are looking at a “vertical” set; a set

of points along the y-axis of the graph of f). A is non-empty (f(a) ∈ A), and has an upper

bound (by previous part of the EVT, that we have already proven). So supA = α exists. We

have f(x) ≤ α for all x ∈ [a, b], so to complete the proof we just need to find a y such that

f(y) = α.

Suppose there is no such y. Then the function g : [a, b]→ R given by

g(x) =
1

α− f(x)

is continuous function (the denominator is never 0). So, again by the previous part of the

EVT, g is bounded above on [a, b], say by some M > 0. So on [a, b] we have 1/(α−f(x)) ≤M ,

or α− f(x) ≥ 1/M , or f(x) ≤ α− 1/M . But this contradicts that α = supA.

We conclude103 that there must be a y with f(y) = α, completing the proof of the

theorem.

103Somewhat miraculously — the function g was quite a rabbit-out-of-a-hat in this proof.
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