
8 The derivative

We think, informally, as continuity as being a measure of “smoothness”: if a function f is

continuous at a, then small changes in the input to f near a lead only to small changes in

the output.

But there are definitely “degrees of smoothness”. The functions f(x) = |x| and g(x) = x2

(see figure) are both continuous at 0, and both achieve their minima at 0, but their graphs

behave very differently near 0 — g curves gently, while f has a sharp point.

The tool we introduce now, that (among many many other things) distinguishes these

two behaviors, is the familiar tool of the derivative.

8.1 Two motivating examples

Instantaneous velocity Suppose that a particle is moving along a line, and that its distance

from the origin at time t is given by the function s(t).

It’s easy to calculate the average velocity of the particle over a time interval for, say,

time t = a to time t = b: it’s the total displacement of the particle, s(b)− s(a), divided

by the total time, b− a.104

But what is the instantaneous velocity of the particle at a certain time t? To make

sense of this, we might do the following: over a small time interval [t, t+ ∆t] (starting

104Remember that velocity is a signed quantity: if a particle starts 10 units to the right of the origin, and

two seconds later is 14 units to the right of the origin, then its average velocity over those two seconds is

(14− 10)/2 = 2 units per second, positive because the particle has progressed further from the origin. If, on

the other hand, it starts 14 units to the right of the origin, and two seconds later is 10 units to the right of

the origin, then its average velocity over those two seconds is (10− 14)/2 = −2 units per second, negative

because the particle has progressed closer to the origin. In both cases the average speed is the same — 2

units per second — speed being the absolute value of velocity.
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at time t, ending at time t+ ∆t), with ∆t > 0, the average velocity is

displacement

time
=
s(t+ ∆t)− s(t)

∆t
.

Similarly over a small time interval [t+ ∆t, t], with ∆t < 0, the average velocity

s(t)− s(t+ ∆t)

−∆t
=
s(t+ ∆t)− s(t)

∆t
.

If this common quantity, (s(t+ ∆t)− s(t))/∆t, is approaching a limit as ∆t approaches

0, then it makes sense to define instantaneous velocity at time t to be that limit, that

is, to be

lim
∆t→0

s(t+ ∆t)− s(t)
∆t

.

Tangent line : What is the equation of the tangent line to the graph of function f at some

point (a, f(a)) on the graph? To answer that, we must answer the more fundamental

question, “what do we mean by ‘tangent line’?”. A preliminary definition might be

that

a tangent line to a graph at a point on the graph is a straight line that touches

the graph only at that point.

This is a fairly crude definition, and fairly clearly doesn’t work: the line y = 1 touches

the graph of y = cosx infinitely many times, at x = 0,±π,±2π, . . ., but clearly should

be declared to be a tangent line to y = cosx at (0, 1); on the other hand, the line

y = 10x touches the graph of y = cosx only once, at (0, 1), but clearly should not be

declared to be a tangent line to y = cosx at (0, 1).

What we really want to say, is that a tangent line to a graph at a point on the graph is

a straight line that passes through the point, and that just “glances off” the graph at

that point, or is “going in the same direction as the graph” at that point, or “has the

same slope as the graph does” at that point.

Clearly these phrases in quotes need to be made more precise. What do we mean by

“the slope of a graph, at a point”? We can make this precise, in a similar way to the

way we made precise the notion of instantaneous velocity.
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A secant line of a graph is a straight line that connects two points (x1, f(x1)), (x2, f(x2))

on the graph. It makes perfect sense to talk of the “slope of a secant line”: it is

f(x2)− f(x1)

x2 − x1

.

The define the slope at a point (a, f(a)), we can consider the slope of the secant line

between (a, f(a)) and (a + h, f(a + h)) for small h > 0, or between (a + h, f(a + h))

and (a, f(a)) for small h < 0. In both cases, this is

f(a+ h)− f(a)

h
.

This secant slope seems like it should be a reasonable approximation of the slope of the

graph at the point (a, f(a)); and in particular, if the slopes of the secant lines approach

a limit as h approaches 0, then it makes a lot of sense to define the slope at (a, f(a)) to

be that limit:

lim
h→0

f(a+ h)− f(a)

h
.

Going back to the original question, once we have found the slope, call it ma, we can

easily figure out the equation of the tangent line to the graph at (a, f(a)), since it is

the unique straight line that passes through (a, f(a)) and has slope ma:

y − f(a) = ma(x− a) or y = ma(x− a) + f(a) or y = max−maa+ f(a).

The two expressions we have obtained from these two examples — lim∆t→0(s(t+ ∆t)−
s(t))/∆t and limh→0(f(a + h) − f(a))/h — are of exactly the same form. Since the same

expression has cropped up in two rather different-looking applications, it makes sense to look

at the expression as an interesting object in its own right, and study its properties. That is

exactly what we will do in this section.

8.2 The definition of the derivative

Let f be a function, and let f be defined at and near some number a (i.e., suppose there is

some ∆ > 0 such that all of the interval (a−∆, a+ ∆) is in the domain of f .

Definition of derivative Say that f is differentiable at a if

lim
h→0

f(a+ h)− f(a)

h

exists. If f is differentiable at a, then write f ′(a) for the value of this limit; f ′(a) is

referred to as the derivative of f at a105.

105There are many alternate notations for the derivative:
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From the previous section, we obtain immediately two interpretations of the quantity

f ′(a):

Velocity if s(t) measures the position at time t of a particle that is moving along the number

line, then s′(a) measures the velocity of the particle at time a.

Slope f ′(a) is the slope of the tangent line of the graph of function f at the point (a, f(a).

Consequently the equation of the tangent line is

y = f ′(a)(x− a) + f(a).

Once we have the notion of the derivate of a function at a point, it’s a very short leap to

considering the derivative as a function.

Definition of the derivative function If f : D → R is a function defined on some domain

D, then the derivative of f is a function, denoted f ′106, whose domain is {a ∈ D :

f differentiable at a}107, and whose value at a is the derivative of f at a.

As we will see in a series of examples, the domain of f ′ may the same as the domain of f , or

slightly smaller, or much smaller.

Before going on to the examples, we mention an alternate definition for of the definition

of derivative:

f ′(a) = lim
b→a

f(b)− f(a)

b− a
.

Indeed, suppose limb→a(f(b)−f(a))/(b−a) exists and equal L. Then for all ε > 0 there is δ > 0

such that whenever b is within δ of a (but not equal to a), we have that (f(b)− f(a))/(b− a)

is within ε of L. Rewriting b as a+ h (so b− a = h), this says that whenever a+ h is within

δ of a (but not equal to a), that is, whenever h is within δ of 0 (but not equal to 0), we have

that (f(a+ h)− f(a))/h is within ε of L. This says limh→0(f(a+ h)− f(a))/h exists and

equal L. The converse direction goes along the same lines.

• f ′(a)

• ḟ(a)

• d
dxf(x) |x=a

• df(x)
dx |x=a

• df
dx |x=a

• dy
dx |x=a (if y is understood to be another name for f)

• ẏ(a) (again, if y is another name for f).

We will almost exclusively use the first of these.
106or df

dx , or ḟ .
107We will shortly modify this definition slightly, to deal with functions which are defined on closed intervals

such as [0, 1]; we will introduce a notion of “differentiable from the right” and “differentiable from the left”

so as to be able to talk about what happens at the end points of the interval.
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8.3 Some examples of derivatives

Given the work we have done on limits and continuity, calculating the derivatives of many

simple function, even directly from the definition, is fairly straightforward. We give a bunch

of examples here.

Constant function f(x) = c, where c is some fixed real number. Presumably, the derivative

of this function is 0 at any real a, that is,

lim
h→0

f(a+ h)− f(a)

h
= 0.

Notice that we can’t verify this instantly by appealing to continuity of the expression

(f(a+ h)− f(a))/h, viewed as a function of h, at h = 0, and then just evaluating the

expression at h = 0; the expression is not only not continuous at h = 0, it is not even

defined at h = 0! This will be a common theme in computing derivatives: the expression

(f(a+ h)− f(a))/h (viewed as a function of h), regardless of the f under consideration,

will always not be defined at h = 0, since the numerator and the denominator both

evaluate to 0 at h = 0. So here, and in all other examples that we do, we will have

to engage in some algebraic manipulation of the expression (f(a+ h)− f(a))/h. The

goal of the manipulation is to try and find an alternate expression, that is equal to

(f(a+h)− f(a))/h for all h except (possibly) h = 0 (the one value of h we do not really

care about); and then see if we can use some of our previous developed techniques to

evaluate the limit as h goes to 0 of the new expression.

For any real a we have, for h 6= 0,

f(a+ h)− f(a)

h
=
c− c
h

=
0

h
= 0,

and so

lim
h→0

f(a+ h)− f(a)

h
= lim

h→0
0 = 0,

from which we conclude that f is differentiable at all a, with derivative 0. (Of course:

the line y = c is clearly the tangent line to f at any point, and this line has slope 0; or,

if a particle is located at the same position, c, on the line at all times, its velocity at all

times is 0.)

In this example, f ′ is the constant 0 function, on the same domain (R) as f .

This example is really simple, but it is worth doing in detail for two reasons. First, a

philosophical reason: to act as a reality check for the definition, and our understanding

of the definition. Second, a practical reason: to illustrate a subtlety of writing up

proofs from first principles of derivatives of functions. It’s very tempting to argue that

f ′(a) = 0 by writing

“f ′(a) = lim
h→0

f(a+ h)− f(a)

h
= lim

h→0

c− c
h

= lim
h→0

0

h
= lim

h→0
0 = 0.”
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But this presentation, starting with the expression f ′(a), presupposes that the limit

that defines the derivative actually exists. We’ll come across plenty of examples where

the limit doesn’t exists. The more correct mathematical approach is to do the algebraic

manipulation to (f(a+ h)− f(a))/h first, and then, when a nicer expression has been

arrived at, whose limit near 0 can easily be computed, introduce the limit symbol. That

was how we approached the write-up above, although frequently in the future we will be

sloppy and write “lim−−−=” before we’ve formally decided that the limit exists.108

Linear function Let f(x) = mx+b for real constants m, b. Since the graph of f is a straight

line with slope m, it should be its own tangent at all points, and so the derivative at

all points should be m. We verify this. As discussed in the last example, we will do

this slightly sloppily, beginning by assuming that the limit exists.

For each real a we have

f ′(a) = lim
h→0

f(a+ h)− f(a)

h

= lim
h→0

m(a+ h) + b− (ma+ b))

h

= lim
h→0

mh

h
= lim

h→0
m

= m,

as we suspected. The key line was the second from last — dividing above and below by

h was valid, because we never consider h = 0 when calculating the limit near 0. In the

last line, we use that the constant function is continuous everywhere, so the limit can

be evaluated by direct evaluation.

In this example, f ′ is the constant m function, on the same domain (R) as f .

Quadratic function Let f(x) = x2. There is every reason to expect that this function is

differentiable everywhere — its graph, on any graphing utility, appears smooth. There

is little reason to expect a particular value for the derivative, as we did in the last

two examples109. We just go through the calculation, and see what comes out. This

time, we’ll do it in what might be called the “proper” way, not initially assuming the

existence of the derivative.

108We actually already did this above, when we wrote “and so

lim
h→0

f(a+ h)− f(a)

h
= lim

h→0
0 = 0′′.

109Not entirely true — when we motivate the product rule for differentiation, we see a good reason to expect

that the derivative of f(x) = x2 at a is 2a.
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For each real a, and for h 6= 0, we have

(a+ h)2 − a2

h
=

a2 + 2ah+ h2 − a2

h

=
2ah+ h2

h
= 2a+ h.

Since limh→0(2a+h) evidently exists and equals 2a, we conclude that limh→0((a+h)2−
a2)/h exists and equals 2a, and so for all real a,

f ′(a) = 2a.

In this example, f ′ is the linear function x 7→ 2x, on the same domain (R) as f .

Power function In general, calculating the derivative of f(x) = xn for n ∈ N at arbitrary

real a is not much harder than in the special case of n = 2, just as long as we bring

the right tool to the algebraic manipulation. Since we’ll be faced with the expression

(a+ h)n − an, it seems that the Binomial Theorem is probably the110 right tool.

For each real a, and for h 6= 0, we have

(a+ h)n − an

h
=

an +
(
n
1

)
an−1h+

(
n
2

)
an−2h2 + · · ·+

(
n
n−1

)
ahn−1 + hn − an

h

=

(
n
1

)
an−1h+

(
n
2

)
an−2h2 + · · ·+

(
n
n−1

)
ahn−1 + hn

h

=

(
n

1

)
an−1 +

(
n

2

)
an−2h+ · · ·+

(
n

n− 1

)
ahn−2 + hn−1.

Now

lim
h→0

(
n

1

)
an−1 =

(
n

1

)
an−1 = nan−1,

while

lim
h→0

(
n

2

)
an−2h = lim

h→0

(
n

3

)
an−3h2 = · · · = lim

h→0

(
n

n− 1

)
ahn−2 = lim

h→0
hn−1 = 0,

all these facts following from our previous work on continuity. So by the sum part of

the sum/product/reciprocal theorem for limits, we conclude that

lim
h→0

(
n

1

)
an−1 +

(
n

2

)
an−2h+ · · ·+

(
n

n− 1

)
ahn−2 + hn−1 = nan−1.

But then it follows that

lim
h→0

(a+ h)n − an

h
= nan−1;

110or at least a
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in other words, f is differentiable for all real a, with

f ′(a) = nan−1.

In this example, f ′ is the power function x 7→ nxn−1, on the same domain (R) as f .

Quadratic reciprocal One final example in the vein of the previous ones: f(x) = 1/x2. As

long as a 6= 0, we have

f ′(a) = lim
h→0

f(a+ h)− f(a)

h

= lim
h→0

1
(a+h)2 − 1

a2

h

= lim
h→0

a2 − (a+ h)2

(a+ h)2a2h

= lim
h→0

−2ah− h2

(a+ h)2a2h

= lim
h→0

−2a− h
(a+ h)2a2

=
−2a

a2a2

=
−2

a3
.

In this example, f ′ is the function x 7→ −2x3, on the same domain (R \ {0}) as f .

Absolute value function Here we consider f(x) = |x|. We would strongly expect that for

a > 0, we have f differentiable at a, with derivative 1, because a little neighborhood

around such a, we have that f(x) = x; indeed, for a > 0 we have that for all sufficiently

small h (say, for all h < a/2)

|a+ h| − |a|
h

=
a+ h− a

h
=
h

h
= 1,

and so limh→0(|a + h| − |a|)/h = limh→0 1 = 1. We can similarly verify that for all

a < 0, f ′(a) = −1. But at a = 0, something different happens:

|0 + h| − |0|
h

=
|h|
h
,

and we know that limh→0 |h|/h does not exist. So, this is our first example of a function

that is not always differentiable; the domain of f ′ here is R \ {0} while the domain of f

is R.

We should not have expected f(x) = |x| to be differentiable at 0, as there is no coherent

“direction” that the graph of the function is going near 0 — if we look to the right of
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zero, it is increasing consistently at rate 1, while if we look to the left of zero, it is

decreasing consistently at rate 1. Nor is there obviously an unambiguous tangent line.

The comments in the previous paragraph suggest that it might be useful to define

notions of right and left derivatives, as we did with continuity. Say that f is right

differentiable at a, or differentiable from the right, or differentiable from above, if

lim
h→0+

f(a+ h)− f(a)

h

exists, and if it does, denote by f ′+(a) the value of the limit. Say that f is left

differentiable at a, or differentiable from the left, or differentiable from below, if

lim
h→0−

f(a+ h)− f(a)

h

exists, and if it does, denote by f ′−(a) the value of the limit. It’s a (hopefully routine,

by now) exercise to check that

f is differentiable at a if and only if f is both left and right differentiable at

a, and the two one-sided derivatives have the same value; in this case that

common value is the value of the derivative at a.

So, for example, with f(x) = |x| we have

f ′+(0) = lim
h→0+

|h+ 0| − |0|
h

= lim
h→0+

h

h
= 1

while

f ′−(0) = lim
h→0−

|h+ 0| − |0|
h

= lim
h→0+

−h
h

= −1,

so that f is not differentiable at 0.

Piecewise defined functions Consider

f(x) =

{
x2 if x < 1

ax+ b if x ≥ 1

where a, b are some constants. What choices of a, b make f both continuous and

differentiable on all reals?

Well, clearly f is both continuous and differentiable on all of (−∞, 1) and on all of

(1,∞). What about at 1? We have

lim
x→1+

f(x) = lim
x→1+

ax+ b = a+ b

and

lim
x→1−

f(x) = lim
x→1−

x2 = 1,
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so in order for f to be continuous at 1, we require a+ b = 1. For differentiability, at 1,

we have

lim
h→0+

f(1 + h)− f(1)

h
= lim

h→0+

a+ ah+ b− (a+ b)

h
= lim

h→0+

ah

h
= lim

h→0+
a = a,

and (recalling that a+ b = 1, since we require f to be continuous at 1)

lim
h→0−

f(1 + h)− f(1)

h
= lim

h→0−

(1 + h)2 − (a+ b)

h
= lim

h→0−

2h+ h2

h
= lim

h→0−
(2 + h) = 2.

So, for f to be differentiable at 1 we require a = 2; and since a+ b = 1 this says b = −1.

The function we are considering is thus

f(x) =

{
x2 if x < 1

2x− 1 if x ≥ 1.

Here is the graph. It shows the two pieces not justing fitting together at 1, but fitting

together smoothly.

The square root function Consider f(x) =
√
x, defined on [0,∞). Tho compute its

derivative at any a ∈ (0,∞) we proceed in the usual way:

lim
h→0

√
a+ h−

√
a

h
= lim

h→0

(√
a+ h−

√
a

h

)(√
a+ h+

√
a√

a+ h+
√
a

)
= lim

h→0

(a+ h)− a
h(
√
a+ h+

√
a)

= lim
h→0

1

(
√
a+ h+

√
a)

=
1

2
√
a
.
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So f is differentiable on (0,∞), with derivative f ′(a) = 1/2
√
a.

What about at 0? Because f is not defined for negative inputs, we must consider a one

sided derivative, in particular the right derivative, and we have

lim
h→0+

√
0 + h−

√
0

h
= lim

h→0+

1√
h
.

This limit does not exist, so f is not left differentiable at 0.

A more dramatic example in a similar vein comes from considering g(x) = x1/3, which has

all of R as its domain. By a similar calculation to above, we get that f is differentiable

at all a 6= 0, with derivative f ′(a) = 1/(3a2/3). At a = 0 we have

lim
h→0

(0 + h)1/3 − 01/3

h
= lim

h→0

1

h2/3
,

which again does not exist, so g is not differentiable at 0.

What’s odd about this is that from a drawing of the graph of g, it seems that g has an

unambiguous slope/tangent line at the point (0, 0):

It is the vertical line, x = 0. We are failing to see this in the math, because the vertical

line has infinite slope, and we have no real number that captures that.111

sin(1/x) and variants Consider the three functions

f1(x) = sin(1/x), x 6= 0

f2(x) = x sin(1/x), x 6= 0

f3(x) = x2 sin(1/x), x 6= 0,

111Shortly we will talk about “infinite limits” and rectify this deficiency.
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with f1(0) = f2(0) = f3(0) = 0.

All three of these functions have domain R. What about the domains of their derivatives?

Presumably they are all differentiable at all non-zero points.112

What about at 0? For f1, using f1(0) = 0 we have (if the limit exists)

f ′(0) = lim
h→0

sin(1/h)

h
.

It’s a slightly tedious, but fairly instructive, exercise to verify that this limit does not

exist; so f1 is not differentiable at 0 (and maybe we shouldn’t have expected it to be:

it’s not even continuous at 0).

For f2, which is continuous at 0, we have a better chance. But

lim
h→0

f2(0 + h)− f2(0)

h
= lim

h→0

h sin(1/h)

h
= lim

h→0
sin(1/h),

which does not exist; so f2 is not differentiable at 0, either.

For f3, however, we have

f ′3(0) = lim
h→0

h2 sin(1/h)

h
= lim

h→0
h sin(1/h) = 0,

so f3 is not differentiable at 0, with derivative 0.

We will return to this example when considering a function which is k times differentiable,

but not (k + 1) times differentiable.

Weierstrass function It’s easy to come up with an example of a function that is defined

everywhere differentiable nowhere — the Dirichlet function works well. But this seems a

cheat. The Dirichlet function is nowhere continuous, and if we imagine differentiability

to be a more stringent notion of smoothness than continuity, then we might expect that

non-continuous functions are for some fairly trivial reason non-differentiable.113

So what about a continuous function that is nowhere differentiable? It’s fairly easy

to produce an example of a function that is continuous everywhere, but that has

infinitely many points of non-differentiability; even an infinite collection of points that

get arbitrarily close to each other. For example, the function f(x) = x sin(1/x) is

continuous everywhere on its domain R \ {0}, and presumably differentiable everywhere

on its domain; but if we take its absolute value we get a function that is still continuous,

but has a sharp point (so a point of non-differentiability) at each place where it

touches the axis (see figure below). In other words, if h(x) = |x sin(1/x)| then while

Domain(h) = R \ {0} we have Domain(h′) = R \ {0,±1/π,±2/π,±3/π, . . .}.
112We will verify this informally soon, using or informal/geometric definition of the trigonometric functions.
113This is true, as we’ll see in a moment.
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It is far less easy to come with an example of a function which is continuous everywhere,

but differentiable nowhere; nor is it easy to imagine what such a function could look like.

There are examples114, but they are not as easy to explain as the Dirichlet function

(our example of a function that is defined everywhere but continuous nowhere). The

first such example was found by Karl Weiestrass in 1872, and so is traditionally called

the Weierstrass function. It is infinitely jagged, and displays a self-similarity or fractal

behavior: zoom in on any portion of the graph, and you see something very similar to

the global picture (see figure below).

Higher derivatives Let f be a function on some domain D. As we have been discussing in

these examples, there may be some points in the domain of f at which f is differentiable,

leading to a function f ′, the derivative function, which might have a smaller domain

than D. But the function f ′ may itself be differentiable at some points, leading to

a function (f ′)′ (which might have a smaller domain than that of f ′). Rather than

114In fact, in a quite precise sense most continuous function are nowhere differentiable.
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working with this ungainly notation, we denote the second derivative by f ′′. Formally,

the second derivative of a function f at a point a is defined to be

f ′′(a) = lim
h→0

f ′(a+ h)− f ′(a)

h
,

assuming that limit exists — which presupposes that f is both defined at and near a,

and is differentiable at and near a.

We may further define the third derivative function, denoted f ′′′, as the derivative of

the second derivative function f ′′. And we can go on; but even without the parentheses,

this “prime” notation gets a little ungainly, quickly. We use the notation f (k) to denote

the kth derivative of f , for and natural number k (so f (3) = f ′′′ and f (1) = f ′). By

convention, f (0) = f .

Physically, if f(t) is the position of a particle at time t, then

• f ′(t) is velocity at time t (rate of change of position with respect to time);

• f ′′(t) is the acceleration at time t (rate of change of velocity with respect to time);

• f ′′′(t) is the jerk at time t (rate of change of acceleration with respect to time),

and so on.

Consider, for example, f(x) = 1/x, with domain all reals except 0. We have

• f ′(x) = −1/x2, domain R \ {0};

• f ′′(x) = 2/x3, domain R \ {0};

• f ′′′(x) = −6/x3, domain R \ {0}, and so on.

As another example, consider the function that is obtained by splicing the cube function

and the square function, i.e.

f(x) =

{
x3 if x ≤ 0

x2 if x ≥ 0.

By looking at one sides limits, it is easy to check that f is continuous at 0, differentiable

at 0, and even twice differentiable at 0, but not thrice differentiable. A homework

problem asks for an example of a function that, at least at some points, is differentiable

k times, but not k + 1 times.

Before moving on to some more theoretical properties of the derivative, we mention one

more motivation. The tangent line to a curve at a point, as we have defined it, seems to

represent a good approximation to the curve, at least close to the point of tangency. Now the

tangent line is a straight line, and it is relatively easy to calculate exact values of points along

a straight line, while the graph of a typical function near a point may well be curved, and the

176



graph may be that of a function whose values are hard to compute (we may be dealing with

f(x) = x sinx/ cos2(π(x+ 1/2)), for example).

This suggests that it might be fruitful to use the point (x, y) on the tangent line at (a, f(a))

to the graph of function f , as an approximation for the point (x, f(x)) (that’s actually on the

graph); and to use y as an approximation for f(x). It seems like thais might be particularly

useful if x is relatively close to a.

Recalling that the equation of the tangent line at (a, f(a)) to the graph of function f is

y = f(a) + f ′(a)(x− a), we make the following definition:

Linearization of a function at a point The linearization Lf,a of a function f at a at

which the function is differentiable is the function Lf,a : R→ R given by

Lf,a(x) = f(a) + f ′(a)(x− a).

Notice that the linearization of f at a agrees with f at a: Lf,a(x) = f(a). The intuition of

the definition is that near a, Lf,a(x) is a good approximation for f(x), and is (often) much

easier to calculate than f(x).

The linearization is particularly useful if the point a is such that both f(a) and f ′(a)

are particularly “nice”. Here’s an example: consider f(x) =
√
x. It’s not in general easy to

calculate values of f , but there are some places where it is easy, namely at those x which are

perfect squares of integers (1, 4, 9, . . .). So, take a = 4. We have f(a) = f(16) = 4, and, since

f ′(x) = 1/(2
√
x), we have f ′(a) = f ′(16) = 1/8 = 0.125. That means that the linearization

of f at 16 is the function

Lf,16(x) = 4 + 0.125(x− 16).

Here are two pictures showing the graphs of both f and Lf,16, one from a wide view, and

the other focussing in on what happens near the point (16, 4). Notice that near to 16 on

the x-axis, the two graphs are very close to each other; this is especially apparent from the

second, close-up, picture, where is is almost impossible to tell the two graphs apart.
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If we use Lf,16 to approximate
√

14, we get

√
14 = f(14) ≈ Lf,16(14) = 4 + 0.125(14− 16) = 3.75.

This is not too bad! A calculator suggests that
√

14 = 3.7416 · · · , so the linearization gives

an answer with an absolute error of around 0.0083, and a relative error of around 2.2%.

Of course, the situation won’t always be so good: if we use Lf,16 to approximate
√

100, we

get an estimate of 4 + 0.125(100−16) = 14.5, which differs from the true value (10) by a large

amount115; and if we use it to estimate
√
−8 we get an estimate of 4 + 0.125(−8− 16) = 1

for a quantity that doesn’t exist!

This leads to the first of two natural questions to ask about the linearization (the second,

you are probably already asking yourself):

• How good is the linearization as an approximation tool, precisely?: It’s easy to approxi-

mate any function, at any possible input: just say “7”. An approximation is only useful

if it comes with some guarantee of its accuracy, such as “
√

14 is approximately 3.75;

and this estimate is accurate to error ±0.2”, meaning that “
√

14 is certain to lie in the

interval (3.55, 3.95)”. The linearization does come with a guarantee of accuracy, but we

will not explore it until next semester, when we consider the much more general (and

powerful) Taylor polynomial.

• Why use a scheme like this, to estimate the values of complicated functions, when we

could just use a calculator?: To answer this, ask another question: how does a calculator

figure out the values of complicated functions?!?

Here’s a theoretical justification for the linearization as a tool for approximating the

values of a function, near the point around which we are linearizing: it’s certainly the case

115Not too surprising, since by most measures 100 is not close to 16.
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that

lim
x→a

(f(x)− Lf,a(x)) = lim
x→a

f(x)− lim
x→a

Lf,a(x) = f(a)− f(a) = 0,

which says that as x approaches a, the linearization gets closer and closer to f (makes smaller

and smaller error). But this is true of lots and lots of candidates for a simple approximating

function; in particular it’s true about the constant function f(a), but something as naive as

that can hardly be considered as a good tool for approximating the function f away from a

(it takes into account nothing except the value of the function at a). The linearization takes

a little more into account about the function; it consider the direction in which the graph

of the function is moving, at the point (a, f(a)). As a consequence of this extra data being

built into the linearization, we have the following fact:

lim
x→a

f(x)− Lf,a(x)

x− a
= lim

x→a

f(x)− f(a)− f ′(a)(x− a)

x− a

= lim
x→a

(
f(x)− f(a)

x− a
− f ′(a)

)
= lim

x→a

f(x)− f(a)

x− a
− lim

x→a
f ′(a)

= f ′(a)− f ′(a)

= 0.

In other words, not only does the value of the linearization get closer and closer to the value

of f as x approaches a, but also

the linearization get closer and closer to f as x approaches a, even when the error

is measured relative to x− a

(a stronger statement, since x− a is getting smaller as x approaches a).116

8.4 The derivative of sin

Here we go through an informal calculation of the derivative of the sin function. It is informal,

because we have only informally defined sin. Next semester, we will give a proper definition

of sin (via an integral), from which all of its basic properties will emerge quite easily.

Along the way, we will derive the important and non-obvious trigonometric limit

lim
h→0

sinh

h
=?.

Because we haven’t yet rigorously defined sin, the treatment here will be quite casual and

intuitive. But at least it will give a sense of the behavior of the trigonometric functions vis

a vis the derivative, and allow us to add sin and cos to the army of functions that we can

differentiate.

Recall how we (informally, geometrically) defined the trigonometric functions sin and cos:

116The linearization is actually the unique linear function with this property. We’ll have much more to say

about this next semester, when we look at Taylor series.
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If P is a point on the unit circle x2 + y2 = 1, that is a distance θ from (1, 0),

measured along the circle in a counterclockwise direction (starting from P ), then

the x-coordinate of P is cos θ, and the y-coordinate is sin θ.

It’s typical to refer to the angle made at (0, 0), in going from P to (0, 0) to (1, 0), as θ; see

the picture below.

And once we have said what “angle” means, it is easy to see (by looking at ratios of

side-lengths of similar triangles) that this definition of sin and cos coincides with the other

geometric definition you’ve seen: if triangle ABC has a right angle at B, and an angle θ at A,

then

sin θ =
BC

AC
=

opposite

hypothenuse
, cos θ =

BA

AC
=

adjacent

hypothenuse
.

What is the derivative of sin? By definition, sin′ θ is

lim
h→0

sin(θ + h)− sin θ

h
.

There’s no obvious algebraic manipulation we can do here to make this limit easy to calculate.

We need the sine sum formula:

for any angles α, β, sin(α + β) = sinα cos β + cosα sin β.

Here is a picture, that leads to a proof of this formula (square brackets indicate right

angles):
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Question 1: Why does this prove

sin(α + β) = sinα cos β + cosα sin β?

Answer:

• First argue that angle RPQ is α (look first at OQA, then RQO, then RQP, then RPQ).

• Argue (from the definition of sin, and similar triangles) that PQ is sin β, and so PR is

cosα sin β.

• Argue similarly that OQ is cos β, and so AQ is sinα cos β.

• Since AQ is the same as RB, and since PB is known, conclude that

sin(α + β) = sinα cos β + cosα sin β.

Of course, this geometric proof only works for α, β ≥ 0, α+ β ≤ π/2; but similar pictures

can be drawn for all other cases.117

Now using the sin sum formula, we have (throughout assuming that all the various limits

117Here is another picture that justifies the trigonometric sum formulae, due to Tamás Görbe:
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in fact exist):

sin′ θ = lim
h→0

sin(θ + h)− sin θ

h

= lim
h→0

sin θ cosh+ cos θ sinh− sin θ

h

= lim
h→0

sin θ(cosh− 1) + cos θ sinh

h

= lim
h→0

sin θ(cosh− 1)

h
+ lim

h→0

cos θ sinh

h

= sin θ lim
h→0

cosh− 1

h
+ cos θ lim

h→0

sinh

h
.

We have reduced to two limits, neither of which look any easier than the one we started

with! But, it turns out they they are essentially the same limit:

lim
h→0

cosh− 1

h
= lim

h→0

(
cosh− 1

h

)(
cosh+ 1

cosh+ 1

)
= lim

h→0

cos2 h− 1

h(cosh+ 1)

= lim
h→0

sin2 h

h(cosh+ 1)

= lim
h→0

sinh

h
lim
h→0

sinh

cosh+ 1

= 0 lim
h→0

sinh

h
= 0.

In the second from last line we used continuity of sin and cos, and in the last line, we used

the (as yet unjustified) fact that (sinh)/h actually tends to a limit, as h nears 0. On this

assumption, we get

sin′ θ = cos θ lim
h→0

sinh

h
.
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So now we have one limit left to consider, and it is a little bit simpler than the limit we

started with.

We now claim that

lim
h→0

sinh

h
= 1.

Here is a picture, that leads to a proof of this claim:

Question 2: Why does this prove

lim
h→0

sinh

h
= 1?

Answer:

• What is the area of the triangle OBC?

• What is the area of the wedge of the circle between OC and OB?

• What is the area of the triangle OBD?

• What is the inequality relation between these three areas?

• Conclude that
sinh

2
≤ h

2
≤ sinh

2 cosh
.

• Conclude that

cosh ≤ sinh

h
≤ 1.
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• Use continuity of cos, and the squeeze theorem, to get the result.

Of course, the picture only shows that limh→0+(sinh)/h = 1; but a similar picture gives

the other one-sided limit.

We now get to conclude that

sin′ θ = cos θ.

What about the derivative of cos? We could play the same geometric game to derive

cos′ θ = − sin θ;

after we’ve seen the chain rule, we’ll give an alternate derivation.

8.5 Some more theoretical properties of the derivative

In this section, rather than looking at specific examples to bring out properties of the

derivative, we derive some more general properties (that, incidentally, will allow us to discover

many more specific examples of derivatives).

We have observed intuitively that differentiability at a point is a more stringent “smooth-

ness” condition that simple continuity; in other words, it’s possible for a function to be

continuous at a point but not differentiable there (f(x) = |x| at x = 0 is an example), but

it should not be possible for a function to be differentiable at a point without first being

continuous. We’ll now turn this intuition into a proven fact.

The hard way to do this is to start with a function which is defined at some point a, but

not continuous there, and then argue that it cannot be differentiable at that point (the non-

existence of the continuity limit somehow implying the non-existence of the differentiability

limit). This is the hard way, because there are many different ways that a function can fail

to be continuous, and we would have to deal with all of them in this approach.

The soft way is to go via the contrapositive, and prove that if f is differentiable at a point,

then it most also be continuous there (the existence of the differentiability limit somehow

implying the existence of the continuity limit). This is easier, because there’s only one way

for a limit to exist; and it immediately implies that failure of continuity implies failure of

differentiability.

Claim 8.1. Suppose that f is defined at and near a, and is differentiable at a. Then f is

continuous at a.

Proof: Since f is differentiable at a, we have that for some real number a,

lim
h→0

f(a+ h)− f(a)

h
= f ′(a).
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But also, limh→0 h = 0. By the product part of the sum/product/reciprocal theorem for

limits, we can conclude that

lim
h→0

(f(a+ h)− f(a)) = lim
h→0

(
f(a+ h)− f(a)

h

)
h

=

(
lim
h→0

f(a+ h)− f(a)

h

)(
lim
h→0

h
)

= f ′(a) · 0
= 0,

so (by the sum part of the sum/product/reciprocal theorem for limits)

lim
h→0

f(a+ h) = f(a),

which says that f is continuous at a.118

The take-away from this is:

continuity is necessarily for differentiability, but not sufficient.

We now derive some identities that will allow us to easily compute some new derivatives

from old ones.

Claim 8.2. Suppose f and g are functions that are both differentiable at some number a,

and that c is some real constant. Then both f + g and cf are differentiable at a, with

(f + g)′(a) = f ′(a) + g′(a)

and

(cf)′(a) = cf ′(a).

Proof: Both statements follow quickly from previously established facts about limits. We

have that

f ′(a) = lim
h→0

f(a+ h)− f(a)

h
and

g′(a) = lim
h→0

g(a+ h)− g(a)

h
,

and so

f ′(a) + g′(a) = lim
h→0

f(a+ h)− f(a)

h
+ lim

h→0

g(a+ h)− g(a)

h

= lim
h→0

(
f(a+ h)− f(a)

h
+
g(a+ h)− g(a)

h

)
= lim

h→0

f(a+ h) + g(a+ h)− f(a)− g(a)

h

= lim
h→0

(f + g)(a+ h)− (f + g)(a)

h
,

118This is not exactly the definition of continuity at a; but you can prove that this is an equivalent definition,

just as we proved earlier that limb→a(f(b)− f(a))/(b− a) is the same as limh→0(f(a+ h)− f(a))/h.
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which exactly says that f + g is differentiable at a, with derivative f ′(a) + g′(a).

Similarly,

cf ′(a) = c lim
h→0

f(a+ h)− f(a)

h

= lim
h→0

c(f(a+ h)− f(a))

h

= lim
h→0

(cf)(a+ h)− (cf)(a)

h

which exactly says that cf is differentiable at a, with derivative cf ′(a).

Note that the second part of the above claim should alert us to an important insight:

we should not expect (as we might have, by analogy with similar properties for limits) that

the derivative of the product of a pair of functions is the product of the derivatives. If that

were the case, then, since the derivate of the constant function c is 0, we would have that the

derivative of cf at any point is also 0.

Another reason we should not expect that the derivative of the product of a pair of

functions is the product of the derivatives is through a dimension analysis. Suppose that f(x)

is measuring the height (measured in meters) of a square at time x (measured in seconds),

and that g(x) is measuring the width of the square. Then (fg)(a) is measuring the area of

the square (measured in meter squared) at time a. Now, the derivative of a function at a can

be thought of as measuring the instantaneous rate at which the function is changing at a,

as the input variable changes — indeed, for any h 6= 0 the quantity (f(a+ h)− f(a))/h is

measuring the average change of f over the time interval [a, a+ h] (or [a+ h, a], if h < 0), so

if the limit of this ratio exists at h approaches 0, it makes sense to declare that limit to be

the instantaneous rate of change at a.

So (fg)′(a) is measuring the rate at which the area of the square is changing, at time a.

This is measured in meters squared per second . But f ′(a)g′(a), being the product of two

rates of changes of lengths, is measured in meters squared per second squared. The conclusion

is that (fg)′(a) and f ′(x)g′(a) have different dimensions, so we should not expect them to be

equal in general.

What should we expect (fg)′(a) to be? The linearizations of f and g provide a hint. For

x near a, we have

f(x) ≈ Lf,a(x) = f(a) + f ′(a)(x− a)

and

g(x) ≈ Lf,a(x) = g(a) + g′(a)(x− a).

Using the linearizations to approximate f and g at a+ h we get

(fg)(a+ h) = f(a+ h)g(a+ h)

≈ (f(a) + f ′(a)h)(g(a) + g′(a)h)

= f(a)g(a) + f ′(a)g(a)h+ f(a)g′(a)h+ f ′(a)g′(a)h2
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and so
(fg)(a+ h)− (fg)(a)

h
≈ f ′(a)g(a) + f(a)g′(a) + f ′(a)g′(a)h.

Considering what happens as h → 0, this strongly suggests that (fg)′(a) = f ′(a)g(a) +

f(a)g′(a), and this is indeed the case.

Claim 8.3. (Product rule for differentiation) Suppose f and g are functions that are both

differentiable at some number a. Then both fg is differentiable at a, with

(fg)′(a) = f ′(a)g(a) + f(a)g′(a).

Proof: The proof formalizes the intuition presented above. We begin by assuming that fg is

indeed differentiable at a, and try to calculate its derivative.

(fg)′(a) = lim
h→0

f(a+ h)g(a+ h)− f(a)g(a)

h

= lim
h→0

f(a+ h)g(a+ h)− f(a+ h)g(a) + f(a+ h)g(a)− f(a)g(a)

h

= lim
h→0

f(a+ h) (g(a+ h)− g(a)) + (f(a+ h)− f(a)) g(a)

h

= lim
h→0

f(a+ h) (g(a+ h)− g(a))

h
+ lim

h→0

(f(a+ h)− f(a)) g(a)

h

= lim
h→0

f(a+ h) lim
h→0

g(a+ h)− g(a)

h
+

(
lim
h→0

f(a+ h)− f(a)

h

)
g(a)

= f(a)g′(a) + f ′(a)g(a).

Going backwards through the chain of equalities we see that all manipulations with limits

are justified, by

• repeated applications of the sum/product/reciprocal theorem for limits,

• the differentiability of f and g at a, and

• the continuity of f at a (needed for limh→0 f(a+ h) = f(a)), which itself follows from

the differentiability of f at a.

As a first application of the product rule, we re-derive the fact that if fn : R→ R (n ∈ N)

is given by fn(x) = xn, then f ′n (the derivative, viewed as a function) has domain R and

is given by f ′n(x) = nxn−1. We prove this by induction on n; we’ve already done the base

case n = 1. For n ≥ 2 we have that fn = f1fn−1, so, for each real a, by the product rule
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(applicable by the induction hypothesis: fn−1 and f1 are both differentiable at a) we have

f ′n(a) = (f1fn−1)′(a)

= f ′1(a)fn−1(a) + f1(a)f ′n−1(a) (product rule)

= 1 · an−1 + a · (n− 1)an−2 (induction)

= an−1 + (n− 1)an−1

= nan−1,

which completes the induction step.

We extend this now to negative exponents, giving the presentation in a slightly more

streamlined way. For n ∈ N, define gn by gn(x) = 1/xn (so the domain of gn is R \ {0}). We

claim that

g′n(x) =
−n
xn+1

(again with domain R \ {0}). We prove this by induction on n. The base case n = 1 claims

that if g1 is defined by g1(x) = 1/x then for all non-zero x g1 is differentiable with derivative

−1/x2. This is left as an exercise — it’s very similar to a previous example.

For the induction step, assume that g′n−1 = −(n− 1)/xn. We have

g′n(x) = (g1gn−1)′(x)

= g′1(x)gn−1(x) + g1(x)g′n−1(x) (product rule)

=
(−1)(1)

(x2)(xn−1)
+

(1)(−(n− 1))

(x)(xn)
(induction)

=
−n
xn+1

,

which completes the induction step.

Both the sum rule for derivatives and the product rule extend to sums and products of

multiple functions. For sums, the conclusion is obvious:

if f1, f2, . . . , fn are all differentiable at a, then so is
∑n

k=1 fk, and(
n∑
k=1

fk

)′
(a) =

n∑
k=1

f ′k(a).

The proof is an easy induction on n, as it is left as an exercise.

For products, the conclusion is less obvious. But once we apply the product rule multiple

times to compute the derivative of the product of three functions, a fairly clear candidate

conclusion emerges. We have (dropping reference to the particular point a, to keep the

notation readable)

(fgh)′ = ((fg)h)′ = (fg)′h+ (fg)h′ = ((f ′g) + (fg′))h+ (fg)h′ = f ′gh+ fg′h+ fgh′.

This suggests:
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Claim 8.4. (Product rule for product of n functions)119 If f1, f2, . . . , fn are all differentiable

at a, then so is
∏n

k=1 fk, and(
n∏
k=1

fk

)′
(a) =

n∑
k=1

f1(a)f2(a) · · · fk−1(a)f ′k(a)fk+1(a) · · · fn−1(a)fn(a).

Proof: Strong induction on n, with n = 1 trivial and n = 2 being the product rule. For

n > 2, write f1f2 · · · fn as (f1 · · · fn−1)(fn), and apply the product rule to get

(f1f2 · · · fn)′(a) = (f1 · · · fn−1)′(a)fn(a) + (f1 · · · fn−1)(a)f ′n(a).

The second term here, (f1 · · · fn−1)(a)f ′n(a), gives the term corresponding to k = n in∑n
k=1 f1(a) · · · f ′k(a) · · · fn(a). By induction the first term is

(f1 · · · fn−1)′(a)fn(a) =

(
n−1∑
k=1

f1(a) · · · f ′k(a) · · · fn−1(a)

)
fn(a)

=
n−1∑
k=1

f1(a) · · · f ′k(a) · · · fn−1(a)fn(a),

and this gives the remaining terms (k = 1, . . . , n− 1) in
∑n

k=1 f1(a) · · · f ′k(a) · · · fn(a). This

completes the induction.

As application of this generalized product rule, we give a cute derivation of

h′n(x) =
1

n
x

1
n
−1

where hn(x) = x1/n, n ∈ N. Recalling the previously used noatation f1(x) = x, we have

hn(x)hn(x) · · ·hn(x) = f1(x),

where there are n terms in the product. Differentiating both sides, using the product rule

for the left-hand side — and noting that, since all the terms in the product are the same,

it follows that all n terms in the sum that determines the derivative of the product are the

same — we get

nh′n(x)hn(x)n−1 = 1,

which, after a little algebra, translates to

h′n(x) =
1

n
x

1
n
−1.

119In words: the derivative of a product of n functions is the derivative of the first times the product of the

rest, plus the derivative of the second times the product of the rest, and so on, up to plus derivative of the

last times the product of the rest.
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Although this is cute, it’s a little flawed — we assumed that h′n(x) exists. So essentially what

we have done here is argued that if the nth root function is differentiable then its derivative

must be what we expect it to be. To actually verify that the root function is differentiable,

we need to go back to the definition, as we did with the square root function.

Another way to generalize the product rule is to consider higher derivatives of the product

of two functions. We have

(fg)(0) = fg = f (0)g(0),

(fg)(1) = (fg)′ = fg′ + f ′g = f (0)g(1) + f (1)g(0),

and

(fg)(2) = (fg)′′ = (fg′ + f ′g)′ = fg′′ + 2f ′g′ + f ′′g′′ = f (0)g(2) + 2f (1)g(1) + f (2)g(0).

There seems to be a pattern here:

(fg)(n) =
n∑
k=0

(SOME COEFFICIENT DEPENDING ON n and k) f (k)g(n−k).

A homework problem asks you to find the specific pattern, and prove that is correct for all

n ≥ 0.

After the product rule, comes the quotient rule. We work up to that by doing the

reciprocal rule first.

Claim 8.5. (Reciprocal rule for differentiation) Suppose g is differentiable at some number

a. If g(a) 6= 0 Then (1/g) is differentiable at a, with(
1

g

)′
(a) = − g

′(a)

g2(a)
.

Proof: Since g is differentiable at a, it is continuous at a, and since g(a) 6= 0, g(x) 6= 0 for

all x in some interval around a. So 1/g is defined in an interval around a.

We have (
1

g

)′
(a) = lim

h→0

1
g(a+h)

− 1
g(a)

h

= lim
h→0

g(a)− g(a+ h)

hg(a+ h)g(a)

= −
(

lim
h→0

g(a+ h)− g(a)

h

)(
lim
h→0

1

g(a+ h)g(a)

)
= − g

′(a)

g2(a)
,

where, as usual, going backwards through the chain of equalities we see that all manipulations

with limits are justified (and all claimed limits exist), by
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• repeated applications of the sum/product/reciprocal theorem for limits,

• the differentiability of g at a, and

• the continuity of g at a.

The reciprocal rule allows an alternate derivation of the derivative of gn(x) = x−n (n ∈ N).

Since gn(x) = 1/fn(x) (where fn(x) = xn) and f ′n(x) = nxn−1, we have

g′n(x) = −nx
n−1

x2n
= − n

xn+1
.

The rule for differentiating the quotient of functions follows quickly from the reciprocal,

by combining it with the product rule:

Claim 8.6. (Quotient rule for differentiation) Suppose f and g are differentiable at some

number a. If g(a) 6= 0 then (f/g) is differentiable at a, with(
f

g

)′
(a) =

f ′(a)g(a)− f(a)g′(a)

g2(a)
.

Proof: We view f/g as (f)(1/g), and apply product and quotient rules to get(
f

g

)′
(a) = f ′(a)

(
1

g(a)

)
+ f(a)

(
1

g

)′
(a)

=
f ′(a)

g(a)
− f(a)g′(a)

g2(a)

=
f ′(a)g(a)− f(a)g′(a)

g2(a)
.

With all of these rules, we can easily differentiate any rational function, and all root

functions, but we cannot yet differentiate a function like f(x) =
√
x2 + 1, or like f(x) = sin2 x

(unless we go back to the definition, which is nasty). What we need next is rule saying what

happens when we try to differentiate the composition of two known functions. This rule is

probably the most important one in differential calculus, so we give it its own section.

8.6 The chain rule

Suppose that g is differentiable at a, and that f is differentiable at g(a). We would expect

that f ◦ g, the composition of f and g, should be differentiable at a, but what should the

derivative be? To get an intuition, we do what we did before deriving the product rule, and
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consider the linearizations of g and f near a and g(a), respectively. We have, for any number

a at which g is differentiable,

g(a+ h)− g(a) ≈ g′(a)h, (?)

and for any number A at which f is differentiable,

f(A+ k)− f(A) ≈ f ′(A)k, (??)

both approximations presumably reasonable when h and k are small (and in particular,

getting better and better as h and k get smaller). So

(f ◦ g)(a+ h)− (f ◦ g)(a)

h
=

f(g(a+ h))− f(g(a))

h

≈ f(g(a) + g′(a)h)− f(g(a))

h
(applying (?))

≈ f ′(g(a))g′(a)h

h
(applying (??) with A = g(a) and k = g′(a)h)

= f ′(g(a))g′(a).

This suggest an answer to the question “what is the derivative of a composition?”, and it

turns out to be the correct answer.

Claim 8.7. (Chain rule for differentiation) Suppose that g is differentiable at a, and that f

is differentiable at g(a). Then f ◦ g is differentiable at a, and

(f ◦ g)′(a) = f ′(g(a))g′(a).

A word of warning: f ′(a) means the derivative of f at input a; so f ′(g(a)) is the derivative

of f evaluated at g(a), NOT the derivative of (f composed with g) evaluated at a (that’s

(f ◦ g)′(a)). These two things — f ′(g(a)) and (f ◦ g)′(a) — are usually different. Indeed,

f ′(g(a)) = lim
h→0

f(g(a) + h)− f(g(a))

h

while

(f ◦ g)′(a) = lim
h→0

f(g(a+ h))− f(g(a))

h
.

Usually g(a) + h 6= g(a+ h) (consider, for example, g(x) = x3: we have

g(a) + h = a3 + h 6= (a+ h)3 = g(a+ h)).

There is one exception: when g(x) = x+ c, for some constant c, we have

g(a) + h = (a+ c) + h = (a+ h) + c = g(a+ h).

One upshot of this is that if h(x) = f(x + c) then h′(x) = f ′(x + c). But in general if a

function h is defined as the composition f ◦ g (here g was g(x) = x+ c), you need to use the

chain rule to evaluate the derivative of h.

Before giving the proof of the chain rule, we present some examples.
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• h1(x) = sin2 x. This is the composition h = square ◦ sin, where square(x) = x2. By the

chain rule

h′1(x) = square′(sin(x)) sin′(x) = 2 sinx cosx.

• h2(x) = sin(x2). This is the composition h = sin ◦square. By the chain rule

h′2(x) = sin′(square(x))�′(x) = (cos(x2))2x = 2x cosx2.

Notice that h′1(x) 6= h′2(x) (in general); but since composition is not commutative, there

is no particular reason to expect that these two functions h1, h2 would end up having

the same derivative.

• f(x) = 1/xn. We can view this as the composition “reciprocal after nth power, and

find, via chain rule (and the fact that we have already computed the derivatives of both

the reciprocal function and the nth power function), that

f ′(x) =
−1

(xn)2
nxn−1 =

−n
xn+1

.

Or, we can view f as the composition “nth power after reciprocal” to get

f ′(x) = n(1/x)n−1 · −1

x2
=
−n
xn+1

.

Either way we get the same answer.

• The derivative of cosx. We have observed that the derivative of cos can be obtained

by geometric arguments in a manner similar to the way we derived the derivative of

sin. Another approach is to consider the equation sin2 x+ cos2 x = 1. The right- and

left-hand sides here are both functions of f , so both can be differentiated as functions

of x. Using the chain rule for the right-hand side, we get

2 sinx cosx+ 2 cosx cos′ x = 0

or, dividing across by cosx120,

cos′ x = − sinx

(as expected).

• Composition of three functions. Consider f(x) = (sinx3)2. This is the composition of

squaring (on the outside), sin (in the middle), cubing (inside), so f1 ◦ f2 ◦ f3, where f1 is

the square function, f2 the sin function, and f3 the cube function. The chain rule says

(f1 ◦ f2 ◦ f3)′(a) = (f1 ◦ (f2 ◦ f3))′(a)

= f ′1((f2 ◦ f3)(a))((f2 ◦ f3)′(a))

= f ′1((f2 ◦ f3)(a))f ′2(f3(a))f ′3(a)

= f ′1(f2(f3(a)))f ′2(f3(a))f ′3(a).

120This is a little informal; it really only works in some interval around 0 where cosx 6= 0. But that’s ok; we

only have informal definitions of sin and cos to start with. We will shore all this up next semester.
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So we get

f ′(x) = 2(sin x3)(cosx3)3x2 = 6x6(sinx3)(cosx3).

The chain rule pattern (what happens for the derivative of a composition of four, or

five, or six, or more, functions, should be fairly clear from this example. In applying

the chain rule on a complex composition, you should get used to “working from the

outside in”.

We now present a formalization of the heuristic argument given above for the chain rule.

We will give two approaches; the second is perhaps the easier. These are somewhat different

justification to the one presented by Spivak.

First proof of chain rule: Note that given our definition of differentiation, saying

that g is differentiable at a automatically says that it is defined in some interval (b, c) with

b < a < c, and saying that f is differentiable at g(a) automatically says that it is defined in

some interval (b′, c′) with b′ < g(a) < c′.

We start the proof by observing that since g is differentiable at a, we have (for some

number g′(a))

lim
h→0

g(a+ h)− g(a)

h
= g′(a),

which says that as h approaches 0, the expression

g(a+ h)− g(a)

h
− g′(a)

approaches 0. Denoting this expression by ε(h) (a function of h, named ε), we get that

g(a+ h)− g(a) = g′(a)h+ ε(h)h (3)

where ε(h) → 0 as h → 0. The function ε(h) is defined near 0, but not at 0; however, the

fact that ε(h)→ 0 as h→ 0 means that if we extend ε by declaring ε(0) = 0 then not only is

ε defined at 0, but it is continuous at 0.

Similarly

f(g(a) + k)− f(g(a)) = f ′(g(a))k + η(k)k (4)

where η(k) → 0 as k → 0; as before, we extend η to a function that is continuous at 0 by

declaring η(0) = 0. Notice that (4) remains true at k = 0.

We now study the expression f(g(a+ h))− f(g(a)). Applying (3) we get

f(g(a+ h))− f(g(a)) = f(g(a) + g′(a)h+ ε(h)h)− f(g(a)). (5)

Now, for notational convenience, set k = g′(a)h+ ε(h)h (notice that this depends on h, so

we really should think of k as k(h); but to keep the notation manageable, we will mostly just

write k). Applying (4) to (5) we get

f(g(a+ h))− f(g(a)) = f(g(a)) + f ′(g(a))k + η(k)k − f(g(a)) = (f ′(g(a)) + η(k))k.
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Now notice that k consists of two terms both of which are multiples of h, so we may divide

through by h to obtain

f(g(a+ h))− f(g(a))

h
= (f ′(g(a)) + η(k))(g′(a) + ε(h))

= f ′(g(a))g′(a) + f ′(g(a))ε(h) + η(k)(g′(a) + ε(h)).

As h approaches 0, it is certainly that case that f ′(g(a))ε(h) approaches 0, since ε(h) does.

If we could show that η(k)→ 0 as h→ 0, then we would also have η(k)(g′(a) + ε(h))→ 0 as

h→ 0, and so we could conclude that

f(g(a+ h))− f(g(a))

h
→ f ′(g(a))g′(a) as h→ 0,

which is exactly what the chain rule asserts.

It seems clear that η(k) → 0 as h → 0, since we know that η(k) approaches 0 as the

argument k approaches 0, and we can see from the equation k = g′(a)h + ε(h)h that k

approaches 0 as h approaches 0. Making this precise requires an argument very similar to

the one that we used to show that the composition of continuous functions is continuous.

Let ε > 0 be given (this has nothing to do with the function ε(h) introduced earlier).

Since η(x)→ 0 as x→ 0, there is a δ > 0 such that 0 < |x| < δ implies |η(x)| < ε. But in

fact, since η is continuous at 0 (and takes the value 0) we can say more: we can say that

|x| < δ implies |η(x)| < ε. (In a moment we’ll see why this minor detail is important).

Now consider k = k(h) = g′(a)h + ε(h)h. As observed earlier, k(h) approaches 0 as h

approaches 0, so, using the definition of limits, there is a δ′ > 0 such that 0 < |h| < δ′ implies

that |k(h)| < δ (the same δ from the last paragraph). From the last paragraph we conclude

that 0 < |h| < δ′ in turn implies |η(k(h))| < ε, and since ε > 0 was arbitrary, this shows that

η(k)→ 0 as h→ 0, finishing the proof of the chain rule.

Notice that if we only knew that 0 < |x| < δ implies |η(x)| < ε (i.e., if we didn’t have

continuity of η at 0), then knowing that 0 < |h| < δ′ implies that |k(h)| < δ would allow us

to conclude nothing — for those h for which k(h) = 0 (for which g′(a) = −ε(h)), we would

be unable to run this argument.

Second proof of chain rule: We begin with a preliminary observation about the

linearization of a function. Suppose that a function f is differentiable at a. Then we can

write, for all h,

f(a+ h) = Lf,a(a+ h) + errf,a(h),

where errf,a(h), the error in using Lf,a(a+ h) to estimate f(a+ h), is defined by

errf,a(h) := f(a+ h)− f(a)− f ′(a)h.

Notice that (by continuity of f at a) we have that errf,a approaches limit 0 near 0, i.e.,

lim
h→0

(f(a+ h)− f(a)− f ′(a)h) = 0.
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This is no surprise — it’s just saying that the linearization of f agrees with f at a.

But more is true. We have that

errf,a(h)

h
=
f(a+ h)− f(a)

h
− f ′(a)→ f ′(a)− f ′(a) = 0 as h→ 0 (?)

(the last step valid because f is not just continuous but differentiable at a). In other words,

the error we make in using Lf,a(a+ h) to approximate f(a+ h) goes to zero as h

approaches zero, even when scaled relative to h.

We will return to this idea next semester, when discussing Taylor series.

Armed with (?), we can formally prove the chain rule, without using a ε-δ proof. Recall

that we are assuming that g is differentiable at a and that f is differentiable at g(a). Using

first the linearization of g at a (with error errg,a) and then the linearization of f at g(a) (with

error errf,g(a)), we have that f(g(a+h))−f(g(a))
h

=
f(g(a) + hg′(a) + errg,a(h))− f(g(a))

h

=
f(g(a)) + (hg′(a) + errg,a(h))f ′(g(a)) + errf,g(a)(hg

′(a) + errg,a(h))− f(g(a))

h

= f ′(g(a))g′(a) +
errg,a(h)

h
f ′(g(a)) +

errf,g(a)(hg
′(a) + errg,a(h))

h
. (??)

We claim that (??)→ f ′(g(a))g′(a) as h→ 0; if we can show this then we have proved the

chain rule. Indeed, by (?) we have that

errg,a(h)

h
→ 0 as h→ 0.

To deal with the last term in (??) (which we also want to tend to 0) we have to work a little

harder. We have

errf,g(a)(hg
′(a) + errg,a(h))

h
=

errf,g(a)(hg
′(a) + errg,a(h))

h
(
g′(a) + errg,a(h)

h

)
(g′(a) +

errg,a(h)

h

)

=

(
errf,g(a)(hg

′(a) + errg,a(h))

hg′(a) + errg,a(h)

)(
g′(a) +

errg,a(h)

h

)
The second term on the right-hand side goes to g′(a) as h→ 0, by (?). The first term can be

viewed as a composition (a ◦ b)(h) where

• b(h) = hg′(a) + errg,a(h) — a function which is defined and continuous everywhere

• a(x) =
errf,g(a)(x)

x
— a function which is defined everywhere except x = 0, and is

continuous everywhere it is defined.
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However, from (?) we know that limx→0 a(x) = 0, so we can extend a to a function that is

defined and continuous everywhere, by setting a(0) = 0.

We have previously proven that the composition of continuous functions is continuous, so

(a ◦ b) is a function that is defined and continuous everywhere. In particular that means that

lim
h→0

errf,g(a)(hg
′(a) + errg,a(h))

hg′(a) + errg,a(h)
= lim

h→0
(a ◦ b)(h) = (a ◦ b)(0) = a(b(0)) = a(0) = 0,

and the proof of the chain rule is complete.
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