
9 Applications of the derivative

In this section, we discuss some applications of the derivative. All of these related, loosely, to

getting information about the “shape” of a function (or more correctly about the shape of the

graph of a function) from information about the derivative; but as we will see in examples,

the applications go well beyond this limited scope.

9.1 Maximum and minimum points

At a very high level, this is what our intuition suggests: if a function f is differentiable at a,

then, since we interpret the derivative of f at a as being the slope of the tangent line to the

graph of f at the point (a, f(a)), we should have:

• if f ′(a) = 0, the tangent line is horizontal, and at a f should have either a “local

maximum” or a “local minimum”;

• if f ′(a) > 0, the tangent line has positive slope, and f should be “locally increasing”

near a; and

• if f ′(a) < 0, the tangent line has negative slope, and f should be “locally decreasing”

near a.

This intuition is, unfortunately, wrong: for example, the function f(x) = x3 has f ′(0) = 0,

but f does not have a local maximum at a; in fact, it is increasing as we pass across a = 0.

More correctly, the intuition is only partly correct. What we do now is formalize some

of the vague terms presented in quotes in the intuition above, and salvage it somewhat by

presenting Fermat’s principle.

Let f be a function, and let A be a subset of the domain of f .

Definition of maximum point Say that x is a maximum point for f on A if

• x ∈ A and

• f(x) ≥ f(y) for all y ∈ A.

In this case, say that f(x) is the121 maximum value of f on A.

Definition of minimum point Say that x is a minimum point for f on A if

• x ∈ A and

• f(x) ≤ f(y) for all y ∈ A.

In this case, say that f(x) is the minimum value of f on A.

121“the”: the maximum value is easily checked to be unique.
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Maximum/minimum points are not certain to exist: consider f(x) = x, with A = (0, 1);

f has neither a maximum point nor a minimum point on A. And if they exist, they are not

certain to be unique: consider f(x) = sinx on [0, 2π], which has maximum value 1 achieved

at two maximum points, namely π/2 and 3π/2, and minimum value 1 achieved at three

minimum points, namely 0, π and 2π.

While having derivative equal to 0 doesn’t ensure being at a max point, something is true

in the converse direction: under certain conditions, being a maximum or minimum point,

and being differentiable at the point, ensures that the derivative is 0. The specific conditions

are that the function is defined on an open interval.

Claim 9.1. (Fermat principle, part 1) Let f : (a, b)→ R. If

• x is a maximum point for f on (a, b), or a minimum point, and

• f differentiable at x

then f ′(x) = 0.

Before giving the proof, some remarks are in order:

• As observed earlier via the example f(x) = x3 at 0, the converse to Fermat principle is

not valid: a function f may be differentiable at a point, with zero derivative, but not

have a maximum or minimum at that point.

• The claim becomes false if the function f is considered on a closed interval [a, b]. For

example, the function f(x) = x on [0, 1] has a maximum at 1 and a minimum at 0, is

differentiable at both points122, but at neither point in the derivative zero.123

• Fermat principle makes no assumptions about the function f — it’s not assumed to be

differentiable everywhere, or even continuous. It’s just a function.

Proof: Suppose x is a maximum point, and that f is differentiable at x. Consider the

derivative of f from below at x. We have, for h < 0,

f(x+ h)− f(x)

h
≥ 0

since f(x+ h) ≤ f(x) (x is a maximum point), so the ratio has non-positive numerator and

negative denominator, so is positive. It follows that

f ′−(x) = lim
h→0−

f(x+ h)− f(x)

h
≥ lim

h→0−
0 = 0.

122As differentiable as it can be ... differentiable from above at 0 and from below at 1.
123The state of Connecticut provides a real-world example: the highest point in the state is on a slope up to

the summit of Mt. Frissell, whose peak is in Massachusetts.

199



Now consider the derivative of f from above at x. We have, for h > 0,

f(x+ h)− f(x)

h
≤ 0

since f(x + h) ≤ f(x) still, and so the ratio has non-positive numerator and positive

denominator, so is negative. It follows that

f ′+(x) = lim
h→0+

f(x+ h)− f(x)

h
≤ lim

h→0+
0 = 0.

Since f is differentiable at x (by hypothesis), we have f ′(x) = f ′+(x) = f ′−(x), so f ′(x) ≤ 0 ≤
f ′(x), making f ′(x) = 0.

An almost identical argument works if x is a minimum point.

Fermat principle extends to “local” maxima and minima — points where a function has a

maximum point or a minimum point, if the domain on which the function is viewed is made

sufficient small around the point. Again let f be a function, and let A be a subset of the

domain of f .

Definition of local maximum point Say that x is a local maximum point for f on A if

• x ∈ A and

• there is a δ > 0 such that f(x) ≥ f(y) for all y ∈ (x− δ, x+ δ) ∩ A.

In this case, say that f(x) is a124 local maximum value of f on A.

Definition of local minimum point Say that x is a local minimum point for f on A if

• x ∈ A and

• there is a δ > 0 such that f(x) ≤ f(y) for all y ∈ (x− δ, x+ δ) ∩ A.

In this case, say that f(x) is a local minimum value of f on A.

Just like maximum/minimum points, local maximum/minimum points are not certain

to exist: consider f(x) = x, with A = (0, 1); f has neither a local maximum point nor a

local minimum point on A. And if they exist, they are not certain to be unique: consider

f(x) = 2x2 − x4 defined on [−2, 3]. A look at the graph of this function shows that it has

local maxima at both −1 and 1 (both taking value 1, although of course it isn’t necessarily

the case that multiple local maxima have to share the same value, in general125). It also

has a local minima at −2, 0 and 3, with values −8, 0 and −63. Notice that there are local

minima at the endpoints of the interval, even though if the interval was extended slightly

neither would be a local minimum. This is because the definition of x being a local minimum

124“a”: a local maximum value is clearly not necessarily unique; see examples below.
125Physically, a local maximum is the summit of a mountain, and of course different mountains in general

have different heights.
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of a set A specifies that we should compare the function at x to the function at all y nearby

to x that are also in A.

There is an analog of the Fermat principle for local maxima and minima.

Claim 9.2. (Fermat principle, part 2) Let f : (a, b)→ R. If

• x is a local maximum point for f on (a, b), or a local minimum point, and

• f differentiable at x

then f ′(x) = 0.

We do not present the proof here; it is in fact just a corollary of Claim 9.1. Indeed, if x is

a local maximum point for f on (a, b), then from the definition of local maximum and from

the fact that the interval (a, b) is open at both ends, it follows that there is some δ > 0 small

enough that (x− δ, x+ δ) is completely contained in (a, b), and that x is a maximum point

(as opposed to local maximum point) for f on (x− δ, x+ δ); then if f is differentiable at x

with derivative zero, Claim 9.1 shows that f ′(x) = 0.126

As with Claim 9.1, Claim 9.2 fails if f is defined on a closed interval [a, b], as the example

f(x) = 2x2 − x4 on [−2, 3] discussed above shows.127

Fermat principle leads to an important definition.

Definition of a critical point x is a critical point for a function f if f is differentiable at

x, and if f ′(x) = 0.128 The value f(x) is then said to be a critical value of f .

Here’s the point of critical points. Consider f : [a, b]→ R. Where could a maximum point or

a minimum point of f be? Well, maybe at a or b. If not at a or b, then somewhere in (a, b).

And by Fermat principle, the only possibilities for a maximum point or a minimum point in

(a, b) are those points where f is not differentiable or (and this is where Fermat principle

comes in) where f is differential and has derivative equal to 0; i.e., the critical point of f .

The last paragraph gives a proof of the following.

Theorem 9.3. Suppose f : [a, b]→ R. If a maximum point, or a minimum point, of f exists

(on [a, b]), then x must be one of

• a or b

• a critical point in (a, b) or

• a point of non-differentiability in (a, b).

126I wrote “We do not present the proof here”; but then it seems I went and gave the proof.
127And as does Connecticut: the south slope of Mt. Frissell, crossing into Massachusetts, is a local maximum

high point of Connecticut, but not a point with derivative zero. The highest peak in Connecticut, the highest

point with derivative zero, is the summit of Mt. Bear, a little south of Mt. Frissell.
128Many authors also say that x is a critical point for f if f is not differentiable at x.
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In particular, if f is continuous on [a, b] (and so, a maximum point and a minimum point

exists, by the Extreme Value Theorem), then to locate a maximum point and/or a minimum

point of f it suffices to consider the values of f at a, b, the critical points of f in (a, b) and

the points of non-differentiability of f in (a, b).

Often this theorem reduces the task of finding the maximum or minimum value of a

function on an interval (a priori a task that involves checking infinitely many values) to that

of find the maximum or minimum of a finite set of values. We give three examples:

• f : [−1, 1]→ R defined by

f(x) =


1/3 if x = −1 or x = 1

1/2 if x = 0

|x| otherwise.

Here the endpoints of the closed interval on which the function is defined are −1 and 1.

We have f(−1) = f(1) = 1/3. There are no critical points in (−1, 1), because where the

function is differentiable (on (−1, 0) and (0, 1)) the derivative is never 0. There is one

point of non-differentiability in (−1, 1), namely the point 0, and f(0) = 1/2. It might

seem that the theorem tells us that the maximum value of f on [−1, 1] is 1/2 and the

minimum value is 1/3. But this is clearly wrong, on both sides: f(3/4) = 3/4 > 1/2,

for example, and f(−1/4) = 1/4 < 1/3. The issue is that the function f has no

maximum on [−1, 1] (it’s not hard to check that sup{f(x) : x ∈ [−1, 1]} = 1 and

inf{f(x) : x ∈ [−1, 1]} = 0, but that there are no x’s in [−1, 1] with f(x) = 1 or with

f(x) = −1), and so the hypotheses of the theorem are not satisfied.

• f : [0, 4]→ R defined by

f(x) =
1

x2 − 4x+ 3
.

Here the endpoints of the closed interval on which the function is defined are 0 and 4.

We have f(0) = f(4) = 1/3. To find the critical points in (0, 4), we differentiate f and

set the derivative equal to 0:

f ′(x) =
−(2x− 4)

(x2 − 4x+ 3)2
= 0 when 2x− 4 = 0, or x = 2.

So there is one critical point (at 2), and f(2) = −1. It might seem that the theorem

tells us that the maximum value of f on [0, 4] is 1/3 and the minimum value is −1. But

a quick look at the graph of the functions shows that this is quite wrong; the function

takes arbitrarily large and arbitrarily small values on [1, 4], in particular near to 1 and

near to 2. What went wrong was that, as with the last example, we did not verify the

hypotheses of the theorem. The function f may be written as f(x) = 1/((x−1)((x−3))),

and so is not defined at either 1 or 3, rendering the starting statement “f : [0, 4]→ R”

meaningless. not satisfied.
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• (A genuine example, a canonical example of a “calculus optimization problem”) A piece

of wire of length L is to be bent into the shape of a Roman window — a rectangle

below with a semicircle on top (see the figure below).

What is the maximum achievable area that can be enclosed by the wire with this shape?

We start by introducing names for the various variables of the problem. There are

two reasonable variables: x, the base of the rectangle, and y, the height (these two

values determine the entire shape). There is a relationship between these two numbers,

namely x+ 2y + π(x/2) = L (the window has a base that is a straight line of length

x, two vertical straight line sides of length y each, and a semicircular cap of radius

x/2, so length π(x/2)). The total area enclosed may be expressed as A = xy + πx2/8

(the area of the rectangular base, plus the area of the semicircular cap). We use

x(1 + π/2) + 2y = L to express y in terms of x: y = (L− (1 + π/2)x)/2, so that the

area A becomes a function A(x) of x, namely

A(x) = (x/2)(L− (1 + π/2)x) + πx2/8.

Clearly the smallest value of x that we need consider is 0. The largest value is the

one corresponding to y = 0, so x = L/(1 + π/2). Therefore we are considering the

problem of finding the maximum value of a continuous function A on the closed interval

[0, L/(1 + π/2)]. Because A is continuous, we know that the maximum value exists.

Because A is everywhere differentiable, the theorem tells us that we need only consider

A at 0, L/(1 + π/2), and any point between the two where A′(x) = 0. There is one

such point, at L/(2 + π/2).

We have

– A(0) = 0,

– A(L/(2 + π/2)) = L2

2(2+π/2)2 + πL2

8(2+π/2)2 and

– A(L/(1 + π/2)) = πL2

8(1+π/2)2 .

The second of these is the largest, so is the largest achievable area.
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9.2 The mean value theorem

To go any further with the study of the derivative, we need a tool that is to differentiation as

the Intermediate and Extreme Value Theorems are to continuity. That tool is called the Mean

Value Theorem (MVT). The MVT says, mathematically, that if a function is differentiable on

an interval, then at some point between the start and end point of the interval, the slope of

the tangent line to the function should equal the average slope over the whole interval, that

is, the slope of the secant line joining the initial point of the interval to the terminal point.

Informally, it says that if you travel from South Bend to Chicago averaging 60 miles per hour,

then at some point on the journey you must have been traveling at exactly 60 miles per hour.

By drawing a graph of a generic differentiable function, it is fairly evident that the MVT

must be true. The picture below shows the graph of f(x) = x2. Between 0 and 1, the secant

line is y = x, with slope 1, and indeed there is a number between 0 and 1 at which the slope

of the tangent line to f is 1, i.e., at which the derivative is 1, namely at 1/2.

However, we need to be careful. If we choose to do our mathematics only in the world of

rational numbers, then the notions of limits, continuity and differentiability make perfect

sense; and just as it was possible to come up with examples of continuous functions in this

“Q-world” that satisfy the hypotheses of IVT and EVT, but do not satisfy their conclusions,

it is also possible to come up with an example of a function on a closed interval that is

differentiable in the Q-world, but for which there is no point in the interval where the

derivative is equal the slope of the secant line connecting the endpoints of the interval.129

This says that to prove the MVT, the completeness axiom will be needed. But in fact we’ll

bypass completeness, and prove MVT using EVT (which itself required completeness).

Theorem 9.4. (Mean value theorem) Suppose f : [a, b]→ R is

• continuous on [a, b], and

129Find one! (It will be on the homework · · · ).
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• differentiable on (a, b).

Then there is c ∈ (a, b) with

f ′(c) =
f(b)− f(a)

b− a
.

Proof: We begin with the special case f(a) = f(b). In this case, we require c ∈ (a, b) with

f ′(c) = 0.130

By the Extreme Value Theorem, f has a maximum point and a minimum point in [a, b].

If there is a maximum point c ∈ (a, b), then by Fermat principle, f ′(c) = 0. If there is a

minimum point c ∈ (a, b), then by Fermat principle, f ′(c) = 0. If neither of these things

happen, then the maximum point and the minimum point must both occur at one (or both)

of a and b. In this case, both the maximum and the minimum of f on [a, b] are 0, so f is

constant on [a, b], and so f ′(c) = 0 for all c ∈ (a, b).

We now reduce the general remaining case, f(a) 6= f(b), to the case just considered. Set

L(x) = f(a) + (x− a)
f(b)− f(a)

b− a
;

notice that the graph of this function is the line that passes through (a, f(a)) and (b, f(b)).

Now let h(x) be the (vertical) distance from the point (x, f(x)) to the point (x, L(x)), so

h(x) = f(x)− f(a)−
(
f(b)− f(a)

b− a

)
(x− a).

We have h(a) = h(b) = 0, and h is continuous on [a, b], and differentiable on (a, b). So by the

previous case, there is c ∈ (a, b) with h′(c) = 0. But

h′(x) = f ′(x)−
(
f(b)− f(a)

b− a

)
,

so f ′(c) = f(b)−f(a)
b−a .

Note that both Rolle’s theorem and the MVT fail if f is not assumed to be differentiable

on the whole of the interval (a, b): consider the function f(x) = |x| on [−1, 1].

In the proof of the MVT, we used the fact that if f : (a, b) → R is constant, then

it is differentiable at all points, with derivative 0. What about the converse of this? If

f : (a, b) → R is differentiable at all points, with derivative 0, can we conclude that f is

constant? This seems a “fact” so obvious that it barely requires a proof: physically, it is

asserting that if a particle has 0 velocity at all times, then it must always be located in the

same position.

130This special case is often referred to as Rolle’s theorem. It is traditional to make fun of Rolle’s theorem;

see e.g. this XKCD cartoon: https://xkcd.com/2042/. Before dismissing Rolle’s theorem as a triviality,

though, remember this: in Q-world, it is false, and so its proof requires the high-level machinery of the

completeness axiom.
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But of course, it is not131 be obvious. Indeed, if true, it must be a corollary of the

completeness axiom, because in Q-world, the function f : [0, 2]→ Q given by

f(x) =

{
0 if x2 < 2

1 if x2 > 2
cc

is continuous on [0, 2], differentiable on (0, 2), has derivative 0 everywhere, but certainly is

not constant.

We will establish this converse, not directly from completeness, but from MVT.

Claim 9.5. If f : (a, b) → R is differentiable at all points, with derivative 0, then f is

constant.

Proof: Suppose that f satisfies the hypotheses of the claim, but is not constant. Then there

are a < x0 < x1 < b with f(x0) 6= f(x1). But then, applying MVT on the interval [x0, x1],

we find c ∈ (x0, x1) ⊆ (a, b) with

f ′(c) =
f(x1)− f(x0)

x1 − x0

6= 0,

a contradiction. We conclude that f is constant on (a, b).

Corollary 9.6. If f, g : (a, b)→ R are both differentiable at all points, with f ′ = g′ on all of

(a, b), then there is a constant such that f and g differ by that (same) constant at every point

in (a, b) (i.e., there’s c with f(x) = g(x) + c for all x ∈ (a, b)).

Proof: Apply Claim 9.5 on the function f − g.

Our next application of MVT concerns the notions of a function increasing/decreasing

on an interval. Throughout this definition, I is some interval (maybe an open interval, like

(a, b) or (a,∞), or (−∞, b) or (−∞,∞), or maybe a closed interval, like [a, b], or maybe a

mixture, like (a, b] or [a, b) or (−∞, b] or [a,∞)).

Definition of a function increasing Say that f is increasing on I, or strictly increasing132,

if whenever a < b in I, f(a) < f(b). Say that f is weakly increasing on I if whenever

a < b in I, f(a) ≤ f(b).

131at least, should not
132There is a truly annoying notational issue here. To some people, “increasing” means just what it has

been defined to mean here, namely that as the input to the function increases, the output of the function

genuinely increases, too. In this interpretation, the constant function is not increasing (it’s weakly increasing).

To other people, “increasing” means that as the input to the function increases, the output of the function

either increases or stays the same. In this interpretation, the constant function is increasing. There is no

resolution to this ambiguity, as both usages are firmly established in mathematics. So you have to be very

careful, when someone talks about increasing/decreasing, that you know which interpretation they mean.
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Definition of a function decreasing Say that f is decreasing on I, or strictly decreasing,

if whenever a < b in I, f(a) > f(b). Say that f is weakly decreasing on I if whenever

a < b in I, f(a) ≥ f(b).

Definition of a function being monotone Say that f is monotone on I, or strictly mono-

tone, if it is either increasing on I or decreasing on I. Say that f is weakly monotone

on I if it is either weakly increasing on I or weakly decreasing on I.

Claim 9.7. If f ′(x) > 0 for all x in some interval I, then f is strictly increasing on I. If

f ′(x) < 0 for all x ∈ I, then f is strictly decreasing on I.

If f ′(x) ≥ 0 for all x in some interval I, then f is weakly increasing on I. If f ′(x) ≤ 0

for all x ∈ I, then f is weakly decreasing on I.

Proof: Suppose f ′(x) > 0 for all x ∈ I. Fix a < b in I. By the MVT, there’s c ∈ (a, b) with

f ′(c) =
f(b)− f(a)

b− a
.

By hypothesis, f ′(c) > 0, so f(b) > f(a), proving that f is strictly increasing on I.

All the other parts of the claim are proved similarly.

The converse of this claim is not (entirely) true: if f is strictly increasing on an interval,

and differentiable on the whole interval, then it is not necessarily the case that f ′(x) > 0 on

the interval. The standard example here is f(x) = x3, defined on the whole of the real line;

it’s strictly increasing, differentiable everywhere, but f ′(0) = 0. On the other hand, we do

have the following converse, which doesn’t require MVT; it just comes from the definition of

the derivative (similar to the proof of the Fermat principle). The proof is left as an exercise.

Claim 9.8. If f is weakly increasing on an interval, and differentiable on the whole interval,

then f ′(x) ≥ 0 on the interval.133

Now that we have established a way of identifying intervals on which a function is

increasing and/or decreasing, we can develop some effective tools for identifying where

functions have local minima/local maxima. The first of these gives a partial converse to

the Fermat principle. Recall that Fermat principle says that if f is defined on (a, b), with

f differentiable at some x ∈ (a, b), then if f ′(x) = 0 x might be a local minimum or local

maximum; while if f ′(x) 6= 0, f cannot possibly be a local minimum or local maximum. This

next claim gives some conditions under which we can say that x is a local minimum or local

maximum, when its derivative is 0.

Claim 9.9. (First derivative test) Suppose f is defined on (a, b), and that f is differentiable

at x ∈ (a, b), with f ′(x) = 0. Suppose further that f is differentiable near x134. If f ′(y) < 0

133And, since strictly increasing implies weakly increasing, it follows that if f is strictly increasing on an

interval, and differentiable on the whole interval, then f ′(x) ≥ 0 on the interval.
134Recall that “near x” means: in some interval (x− δ, x+ δ), δ > 0.
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for all y in some small interval to the left of x, and f ′(y) > 0 in some small interval to right

of x, then x is a local minimum for f on (a, b); in fact, x is a strict local minimum, meaning

f(x) < f(y) for all y close to x. If, on the other hand, f ′(y) > 0 for all y in some small

interval to the left of x, and f ′(y) < 0 in some small interval to right of x, then x is a strict

local maximum for f on (a, b).

Proof: We consider only the case where x is claimed to be a strict local minimum (the other

is very similar). We have that on some small interval (x− δ, x], f has non-positive derivative

(positive on (x− δ, x) and 0 at x), so, by Claim 9.7, f is weakly decreasing on this interval.

By the same token, f is weakly increasing on [x, x+ δ). This immediately says that x is a

local minimum point for f on (a, b).

To get the strictness: f is strictly decreasing on (x− δ, x)). For any y in this interval, pick

any y′ with y < y′ < x. We have f(y) > f(y′) (because f is strictly decreasing between y

and y′), and f(y′) ≥ f(x) (because f is weakly decreasing between y′ and x), so f(y) > f(x);

and by the same token f(x) < f(y) for all y in a small interval to the right of x.

Claim 9.10. (Second derivative test) Suppose f is defined on (a, b), and that f is twice

differentiable at x ∈ (a, b), with f ′(x) = 0.

• If f ′′(x) > 0, then a is a (strict) local minimum for f on (a, b).

• If f ′′(x) < 0, then a is a (strict) local maximum for f on (a, b).

• If f ′′(x) = 0 then anything can happen.

Proof: We first consider the case where f ′′(x) > 0. We have

0 < f ′′(x) = f ′′−(x) = lim
h→0−

f ′(a+ h)− f ′(a)

h
= lim

h→0−

f ′(a+ h)

h
.

The denominator in the fraction at the end is negative. For the limit to be positive, the

numerator must be negative for all sufficiently small (close to 0 and negative) h; in other

words, f ′(y) must be negative on some small interval to the left of x. By a similar argument,

f ′(y) must be positive on some small interval to the right of x. By Claim 9.9, f has a strict

local minimum on (a, b) at x.

The case f ′′(x) < 0 is similar. To show that no conclusion can be reached when f ′′(x) = 0,

consider the functions f(x) = x3, g(x) = x4 and h(x) = −x4 at x = 0. In all three cases

the functions have derivative 0 at 0, and second derivative 0 at 0. For f , 0 is neither a

local maximum nor a local minimum point. For g, 0 is a local minimum. For h, 0 is a local

maximum.
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9.3 Curve sketching

How do you get a good idea of the general appearance of the graph of a “reasonable” function

(one which is continuous and differentiable at “most” points)? An obvious strategy is to use

a graphing tool (such as Desmos.com or WolframAlpha.com). Here we’ll describe a “by-hand”

approach, that mostly utilizes information gleaned from the derivative. With powerful

graphing tools available, this might seem pointless; but it’s not. Here are two reasons why

we might want to study curve sketching from first principles.

• It’s a good exercise in reviewing the properties of the derivative, before applying them

in situations where graphing tools may not be as helpful, and

• sometimes, graphing tools get things very wrong135, and it’s helpful to be able to do

things by hand yourself, so that you can trouble-shoot when this happens.

The basic strategy that is often employed to sketch graphs of “reasonable” functions is as

follows.

Step 1 Identify the domain of the function. Express it as a union of intervals.

Step 2 Identify the limiting behavior of the function at any open endpoints of intervals in

the domain; this will usually involve one sided limits and/or limits at infinity, as well

as possible infinite limits).

Step 3 Find the derivative of the function, and identify critical points (where the derivative

is 0), intervals where the derivative is positive (and so the function is increasing), and

intervals where the derivative is negative (and so the function is decreasing).

Step 4 Use the first derivative test to identify local maxima and minima.

Step 5 Plot some obvious points (such as intercepts of axes, local minima and maxima, and

points where the derivative does not exist).

Step 6 Interpolate the graph between all these plotted points, in a manner consistent with

the information obtained from the first four points.

There is also a zeroth step: check if the function is even, or is odd. This typically halves

the work involved in curve sketching: if the function is even, then the graph is symmetric

around the y-axis, and if it is odd, then the portion of the graph corresponding to negative x

is obtained from the portion corresponding to positive x by reflection through the origin.

Our first example is f(x) = x3 + 3x2 − 9x+ 12, which is neither even nor odd.

Step 1 The domain of f is all reals, or (−∞,∞).

Step 2 limx→∞ x
3 + 3x2 − 9x+ 12 =∞ and limx→−∞ x

3 + 3x2 − 9x+ 12 = −∞.

135Ask Desmos to graph the function f(x) = [x · (1/x)].
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Step 3 f ′(x) = 3x2 + 6x− 9. This is defined, and continuous, on all of R, so to find intervals

where it is positive or negative, it is enough to find where it is 0 — 3x2 + 6x− 9 = 0 is

the same as x2 + 2x− 3 = 0 or x = (−2±
√

4 + 12)/2 = 1 or −3. Removing these two

numbers from R leaves intervals (−∞,−3), (−3, 1) and (1,∞). By the IVT, on each of

these intervals f ′ must be either always positive or always negative (if f ′ is both positive

and negative on any of the intervals then by continuity of f ′, f ′ must be 0 somewhere

on that interval, but it can’t be since we have removed to points where f ′ is 0). So we

need to just test one point in each of (−∞,−3), (−3, 1) and (1,∞), to determine the

sign of f ′ on the entire interval. Since f ′(−100) > 0, f ′(0) < 0 and f ′(100) > 0, we find

that f is increasing on (−∞,−3), decreasing on (−3, 1), and increasing on (1,∞).

Step 4 By the first derivative test, there is a local maximum at x = −3 (to the left of −3

the derivative is positive, to the right it is negative, at −3 it is 0), a local minimum at

x = 1, and no other local extrema.

Step 5 At x = 0, f(x) = 12, so (0, 12) is on the graph. The local maximum at x = −3 is

the point (−3, 39), and the local minimum at x = 1 is the point (1, 7). The equation

f(x) = 0 isn’t obviously easy to solve, so we don’t try to calculate any point at which

the graph crosses the x-axis.

Step 6 We are required to plot a curve that’s defined on all reals. As we move from −∞ in

the positive direction, the curve increases from −∞ until it reaches a local maximum

at (−3, 39). Then it drops to a local minimum at (1, 7), passing through (0, 12) along

the way. From the local minimum at (1, 7) it increases to +∞ at +∞. This is a verbal

description of the graph; here’s what is looks like visually, according to Desmos:

With what we know so far, we couldn’t have sketched such an accurate graph; we know, for

example, that f decreases from −3 to 1, but how do we know that it decreases in the manner
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that it does (notice how it “bulges”: between −3 and 1, for a while the graph is lying to the

right of the straight line joining (−3, 39) to (1, 7), and then it moves to being on the left)?

To get this kind of fine detail, we need to study the second derivative, and specifically the

topic of convexity; that will come in a later section.

As a second example, consider f(x) = x2/(1− x2). This is an even function — f(−x) =

f(x) for all x — so we only consider it on the interval [0,∞).

Step 1 The domain of the function (with our attention restricted to [0,∞)) is all non-negative

numbers except x = 1, that is, [0, 1) ∪ (1,∞).

Step 2 We have

lim
x→0−

x2

1− x2
= +∞,

lim
x→0+

x2

1− x2
= −∞

and

lim
x→∞

x2

1− x2
= −1.

Steps 3, 4, 5 We have f ′(x) = 2x/(1 − x2)2, and the domain of f ′ is the same at that

of f : [0, 1) ∪ (1,∞). The derivative is only equal to 0 at 0; at all other points it is

positive. We conclude that f is strictly increasing on (0, 1) and on (1,∞), and it is

weakly increasing on [0, 1). The graph passes through the point (0, 0), and it does not

seem like there are any other obviously easy-to-identify points.

Step 6 Moving from 0 to infinity: the graph starts at (0, 0), and increases to infinity as x

approaches 1 (the line x = 1 is referred to as a vertical asymptote of the graph). To

the right of 1, it (strictly) increases from −∞ to −1 as x moves from (just to the right

of) 1 to (“just to the left of”) ∞. (The line y = −1, that the graph approaches near

infinity but doesn’t reach, is referred to as a horizontal asymptote of the graph). To

the left of the origin, the graph is the mirror image (the mirror being the y-axis) of

what we have just described. Here is Desmos’ rendering (for clarity, the aspect ratio

has been changed from 1 : 1):
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9.4 L’Hôpital’s rule

What is limx→1
x2−1
x3−1

? The function f(x) = (x2 − 1)/(x3 − 1) is not continuous at 1 (it is not

even defined at 1) so we cannot asses the limit by a direct evaluation. We can figure out the

limit, via a little bit of algebraic manipulation, however: away from 1

x2 − 1

x3 − 1
=

(x− 1)(x+ 1)

(x− 1)(x2 + x+ 1)
=

x+ 1

x2 + x+ 1
.

Using our usual theorems about limits, we easily have limx→1
x+1

x2+x+1
= 2/3 (the function

g(x) = (x+ 1)/(x2 + x+ 1) is continuous at 1, with g(1) = 2/3, and g agrees with f at all

reals other than 1).

We have calculated many such awkward limits using this kind of algebraic trickery. A

common feature to many of these limits, is that the expression we are working with is a ratio,

where both the numerator and denominator approach 0 near the input being approached

in the limit calculation; this leads to the meaningless expression “0/0” when we attempt a

“direct evaluation” of the limit as 0/0136. Using the derivative, there is a systematic way of

approaching all limits of this kind, called L’Hôpital’s rule.

Suppose that we want to calculate limx→a f(x)/g(x), but a direct evaluation is impossible

because f(a) = g(a) = 0. We can approximate both the numerator and the denominator

of the expression, using the linearization. The linearization of f near a is Lf(x) = f(a) +

136A meaningless expression, that can take on any possible value, or no value. Consider the following

examples:

• limx→0
cx
x = c, c any real number;

• limx→0
±x2

x = ±∞; and

• limx→0
x sin(1/x)

x , which does not exist.
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f ′(a)(x− a) = f ′(a)(x− a), and the linearization of g near a is Lg(x) = g(a) + g′(a)(x− a) =

g′(a)(x− a).137 Assuming that the linearization is a good approximation to the function it’s

linearizing, especially near the point of interest a, we get that near (but not at) a,

f(x)

g(x)
≈ Lf (a)

Lg(a)
=
f ′(a)(x− a)

g′(a)(x− a)
=
f ′(a)

g′(a)
138

This strongly suggests that if f, g are both differentiable at a, with g′(a) 6= 0 (and with

f(a) = g(a) = 0), then

lim
x→a

f(x)

g(x)
=
f ′(a)

g′(a)
.

For example, with f(x) = x2 − 1, g(x) = x3 − 1, a = 1, so f(a) = g(a) = 0, f ′(x) = 2x,

g′(x) = 3x2, so f ′(a) = 2 and g′(a) = 3, we have

lim
x→1

x2 − 1

x3 − 1
=

2

3
.

Before doing some examples, we try to formalize the linearization proof described above;

along the way we keep track of all the various hypotheses we need to make on f and g.

So, suppose f(a) = g(a) = 0. We have, if all the various limits exist,

lim
x→a

f(x)

g(x)
= lim

x→a

f(x)− f(a)

g(x)− g(a)
(f(a) = g(a) = 0)

= lim
x→a

f(x)−f(a)
x−a

g(x)−g(a)
x−a

=
limx→a

f(x)−f(a)
x−a

limx→a
g(x)−g(a)
x−a

(adding assumption here: bottom limit is non-zero)

=
f ′(a)

g′(a)
.

Going backwards through this chain of equalities yields a proof of the following result, what

turns out to be a fairly weak form of what we will ultimately call L’Hôpital’s rule.

Claim 9.11. Suppose that f and g are both differentiable at a (so, in particular, defined

in some small neighborhood around a, and also continuous at a), and that g′(a) 6= 0. If

f(a) = g(a) = 0, then

lim
x→a

f(x)

g(x)
=
f ′(a)

g′(a)
.

Here are a few examples.

137We’re making the assumption here that f, g are both differentiable at a.
138We’re making another assumption here — that g′(a) 6= 0.
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limx→0
sinx
x

Here f(x) = sinx, g(x) = x, all hypotheses of the claim are clearly satisfied, and

lim
x→0

sinx

x
=

cos 0

1
= 1,

as we already knew.139

limx→0
x

tanx
Recall(?) that tanx = sinx

cosx
, so by the quotient rule,

tan′ x =
(sin′ x)(cosx)− (sinx)(cos′ x)

(cosx)2
=

(cosx)2 + (sinx)2

(cosx)2
=

1

(cosx)2
.

It follows that all hypotheses of the claim are satisfied, and so

lim
x→0

x

tanx
=

1

1/(cos 0)2
= 1.

Alternately we could write x/ tanx = (x cosx)/(sinx), and, since the derivative of

x cosx is −x sinx+ cosx, obtain

lim
x→0

x

tanx
= lim

x→0

x cosx

sinx
=
−0 sin 0 + cos 0

cos 0
= 1.

What we have so far is a very weak form of L’Hôpital’s rule. It is not capable, for example,

of dealing with

lim
x→1

x3 − x2 − x+ 1

x3 − 3x+ 2
,

because although f and g are both 0 at 1, and both differentiable at 1, the derivative of g at 1

is 0. We can, however, deal with this kind of expression using simple algebraic manipulation:

away from 1
x3 − x2 − x+ 1

x3 − 3x+ 2
=

(x+ 1)(x− 1)2

(x+ 2)(x− 1)2
=
x+ 1

x+ 2

so

lim
x→1

x3 − x2 − x+ 1

x3 − 3x+ 2
= lim

x→1

x+ 1

x+ 2
=

2

3
.

The issue L’Hôpital’s rule is running into here is that what’s causing g to be zero at 1 is

somehow “order 2”; one pass of differentiating only half deals with the problem.

There is a much more powerful version of L’Hôpital’s rule that gets around this issue by

making far fewer assumptions on f and g: differentiability of f and g at a is dropped (and

so, continuity, and even existence), and replaced with the hypothesis that near a, the limit

of f ′(x)/g′(x) exists (and so, at least, we are demanding that f and g be differentiable and

continuous near a). Here is the strongest statement of L’Hôpital’s rule.140

139But note that this is more of a reality check than an example. We used this particular limit to discover

that the derivative of sin is cos, so using L’Hôpital (which requires knowing the derivative of sin) to calculate

the limit, is somewhat circular!
140The proof is quite messy, and will only appear in these notes, not in class.
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Theorem 9.12. (L’Hôpital’s rule) Let f and g be functions defined and differentiable near

a141. Suppose that

• limx→a f(x) = 0,

• limx→a g(x) = 0, and

• limx→a
f ′(x)
g′(x)

exists.142

Then limx→a
f(x)
g(x)

exists, equals limx→a
f ′(x)
g′(x)

.

This version of L’Hôpital’s rule is ideal for iterated applications. Consider, for example,

lim
x→1

x3 − x2 − x+ 1

x3 − 3x+ 2
.

Does this exist? By L’Hôpital’s rule, it does if

lim
x→1

3x2 − 2x− 1

3x2 − 3

exists (and if so, the two limits have the same value). Does this second limit exist? Again by

L’Hôpital’s rule, it does if

lim
x→1

6x− 2

6x

exists (and if so, all three limits have the same value). But this last limit clearly exists and

equals 2/3, so we conclude

lim
x→1

x3 − x2 − x+ 1

x3 − 3x+ 2
=

2

3
.

In practice, we would be more likely to present the argument much more compactly as follows:

“ lim
x→1

x3 − x2 − x+ 1

x3 − 3x+ 2
= lim

x→1

3x2 − 2x− 1

3x2 − 3
(by L’Hôpital’s rule)

= lim
x→1

6x− 2

6x
(by L’Hôpital’s rule)

=
2

3
,

where all limits are seen to exist, and all applications of L’Hôpital’s rule are seen to be valid,

by considering the chain of equalities from bottom to top.

The proof of L’Hôpital’s rule relies on a generalization of the Mean Value Theorem, known

as the Cauchy Mean Value Theorem, that considers slopes of parameterized curve.

Definition of a parameterized curve A parameterized curve is a set of points of the form

(f(t), g(t)), where f and g are functions; specifically it is {(f(t), g(t)) : t ∈ [a, b]} where

[a, b] is (some subset of) the domain(s) of f and of g.

141But not necessarily even defined at a.
142Note that we don’t require g′(a) 6= 0: g′(a) might not even exist!
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Think of a particle moving in 2-dimensional space, with f(t) denoting the x-coordinate of

the point at time t, and g(t) denoting the y-coordinate. Then the parameterized curve traces

out the location of the particle as time goes from a to b.

The graph of the function f : [a, b]→ R can be viewed as a parameterized curve — for

example, it is {(t, f(t)) : t ∈ [a, b]}143 On the other hand, not every parameterized curve is

the graph of a function. For example, the curve {(cos t, sin t) : t ∈ [0, 2π]} is a circle (the unit

radius circle centered at (0, 0)), but is not the graph of a function.

We can talk about the slope of a parameterized curve at time t: using the same argument

we made to motivate the derivative being the slope of the graph of a function, it makes sense

to say that the slope of the curve {(f(t), g(t)) : t ∈ [a, b]} at some time t ∈ (a, b) is

lim
h→0

f(t+ h)− f(t)

g(t+ h)− g(t)
= lim

h→0

(f(t+ h)− f(t))/h

(g(t+ h)− g(t))/h
=

limh→0(f(t+ h)− f(t))/h

limh→0(g(t+ h)− g(t))/h
=
f ′(t)

g′(t)
,

assuming f ′(t), g′(t) exist and g′(t) 6= 0.

We can also talk about the average slope of the curve, across the time interval [a, b]; it’s

f(b)− f(a)

g(b)− g(a)
,

assuming g(a) 6= g(b). The Cauchy Mean Value Theorem says that if the parameterized

curve is suitably smooth, there is some point along the curve where the slope is equal to the

average slope.

Theorem 9.13. (Cauchy Mean Value Theorem) Suppose that f, g : [a, b] → R are both

continuous on [a, b] and differentiable on (a, b). There is t ∈ (a, b) with

(f(b)− f(a))g′(t) = (g(b)− g(a))f ′(t).

Before turning to the (short) proof, some remarks are in order.

• If g(b) 6= g(a) then the theorem says that

f(b)− f(a)

g(b)− g(a)
=
f ′(t)

g′(t)

for some t ∈ (a, b); that is, there is a point of the parameterized curve {(f(t), g(t)) : t ∈
[a, b]} where the slope equal the average slope (as promised).

• If g is the identity (g(x) = x) then the Cauchy Mean Value theorem says that if

f : [a, b]→ R is continuous on [a, b] and differentiable on (a, b), then there is t ∈ (a, b)

with

f(b)− f(a) = (b− a)f ′(t);

this is exactly the Mean Value Theorem.

143But this representation is not unique. For example, {(t, f(t)} : t ∈ [0, 1] and {(t2, f(t2)) : t ∈ [0, 1]} both

trace out the same graph, that of the squaring function on domain [0, 1]; but they are different parameterized

curves, since the particles are moving at different speeds in each case.
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• Using the Mean Value Theorem, we can quickly get something that looks a little like

the Cauchy MVT: there’s t1 ∈ (a, b) with

f(b)− f(a)

b− a
= f ′(t1)

and t2 ∈ (a, b) with
g(b)− g(a)

b− a
= g′(t2),

from which it follows that

(f(b)− f(a))g′(t2) = (g(b)− g(a))f ′(t1).

The power of the Cauchy MVT is that it is possible to take t1 = t2, and this can’t be

obviously deduced from the Mean Value Theorem.

Proof (of Cauchy Mean Value Theorem): Define

h(x) = (g(b)− g(a))f(x)− (f(b)− f(a))g(x).

This is continuous on [a, b] and differentiable on (a, b). Also,

h(a) = (g(b)− g(a))f(a)− (f(b)− f(a))g(a)

= g(b)f(a)− f(b)g(a)

= (g(b)− g(a))f(b)− (f(b)− f(a))g(b)

= h(b).

By Rolle’s theorem (or MVT) there is t ∈ (a, b) with h′(t) = 0. But

h′(t) = (g(b)− g(a))f ′(t)− (f(b)− f(a))g′(t)

so h′(t) = 0 says (f(b)− f(a))g′(t) = (g(b)− g(a))f ′(t), as required.

Proof (of L’Hôpital’s rule)144: To begin the proof of L’Hôpital’s rule, note that a number of

facts about f and g are implicit from the facts that limx→a f(x) = 0, limx→a g(x) = 0, and

limx→a f
′(x)/g′(x) exists:

144Here’s a sketch of the argument. f and g are both continuous on some interval (a, a+ ∆) (because they

are differentiable near a). Since f, g → 0 near a, we can declare g(a) = f(a) = 0 to make the functions both

continuous on [a,∆ (this may change the value of f, g at a, but won’t change any of the limits involved in

L’Hôpital’s rule). Now for each b < ∆ we have (since f, g are continuous on [a, b] and differentiable on (a, b))

that f(b)/g(b) = (f(b) − f(a))/(g(b) − g(a)) = f ′(c)/g′(c) for some c ∈ (a, b); this is Cauchy MVT. As b

approaches a from above, the c that comes out of CMVT approaches a, so near a (from above) f(b)/g(b)

approaches limc→a+ f ′(c)/g′(c). A very similar argument gives the limit from below. Because f, g are not

known to be differentiable at a, CMVT can’t be applied in any interval that has a in its interior, which is

why the argument gets split up into a “from above” and “from below” part.
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• both f and g are differentiable and hence continuous in some open interval around a,

except possibly at a itself (neither f nor g are necessarily even defined at a) and

• there is some open interval around a on which the derivative of g is never 0 (again, we

rule out considering the derivative of g at a here, as this quantity may not exist).

Combining these observations, we see that there exists a number δ > 0 such that on

(a− δ, a+ δ) \ {a} both f and g are continuous and differentiable and g′ is never 0.

Redefine f and g by declaring f(a) = g(a) = 0 (this may entailing increasing the domains

of f and/or g, or changing values at one point). Notice that after f and g have been re-defined,

the hypotheses of L’Hôpital’s rule remain satisfied, and if we can show the conclusion for

the re-defined functions, then we trivially have the conclusion for the original functions (all

this because in considering limits approaching a, we never consider values at a). Notice also

that f and g are now both continuous at a, so are in fact continuous on the whole interval

(a− δ, a+ δ).

In particular, this means that we can apply both the Mean Value Theorem and Cauchy’s

Mean Value Theorem on any interval of the form [a, b] for b < a+ δ or [b, a] for b > a− δ (we

have to split the argument into a consideration of two intervals, one to the right of a and one

to the left, because we do not know whether f and/or g are differentiable at a).

Given any b, a < b < a + δ, we claim that g(b) 6= 0. Indeed, if g(b) = 0 then applying

the Mean Value Theorem to g on the interval [a, b] we find that there is c, a < c < b, with

g′(c) = (g(b)− g(a))/(b− a) = 0, but we know that g′ is never 0 on (a, a+ δ). Similarly we

find that g(b) 6= 0 for any b, a− δ < b < a.

Fix an x, a < x < a+ δ. Applying Cauchy’s Mean Value Theorem on the interval [a, x]

we find that there is an αx, a < αx < x, such that

f(x)

g(x)
=
f(x)− f(a)

g(x)− g(a)
=
f ′(αx)

g′(αx)
.

(Here we use g(a) = f(a) = 0 and the fact that g(x) 6= 0).

Since αx → a+ as x→ a+, and since limx→a+ f ′(x)/g′(x) exists, it seems clear that

lim
x→a+

f(x)

g(x)
= lim

x→a+

f ′(x)

g′(x)
, (6)

and by similar reasoning on the interval (a− δ, a) we should have

lim
x→a−

f(x)

g(x)
= lim

x→a−

f ′(x)

g′(x)
. (7)

L’Hôpital’s rule follows from a combination of (6) and (7).

Thus to complete the proof of L’Hôpital’s rule we need to verify (6). Fix ε > 0. There is a

δ′ > 0 such that a < x < a+ δ′ implies |f ′(x)/g′(x)− L| < ε, where L = limx→a+ f ′(x)/g′(x).

We may certainly assume that δ′ < δ. But then a < x < a + δ, and so we have that
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f(x)/g(x) = f ′(αx)/g
′(αx) where a < αx < x < a+ δ′. Since αx is close enough to a we have

|f ′(αx)/g′(αx) − L| < ε and so |f(x)/g(x) − L| < ε. We have shown that a < x < a + δ′

implies |f(x)/g(x) − L| < ε, which is the statement that L = limx→a+ f(x)/g(x). This

completes the verification of (6).

The expressions that L’Hôpital’s rule helps calculate the limits of, are often referred to as

“indeterminates of the form 0/0” (for an obvious reason). There is a more general form of

L’Hôpital’s rule, that can deal with more “indeterminate” forms. In what follows, we use

“lim” to stand for any of the limits

• limx→a,

• limx→a− ,

• limx→a+ ,

• limx→∞, or

• limx→−∞,

and in interpreting the following claim, we understand that whichever version of “lim” we are

thinking of for the first limit (lim f), we are thinking of the same version for all the others

(lim g, lim f ′/g′ and lim f/g).

Claim 9.14. (General form of L’Hôpital’s rule)145 Suppose that lim f(x) and lim g(x) are

either both 0 or are both ±∞. If

lim
f ′

g′

has a finite value, or if the limit is ±∞ then

lim
f

g
=
f ′

g′
.

We won’t give a prove of this version of L’Hôpital’s rule, but here’s a sketch of how one of

the variants goes. Suppose limx→∞ f(x) =∞, limx→∞ g(x) =∞, and limx→∞ f
′(x)/g′(x) = L.

Then we claim that limx→∞ f(x)/g(x) = L.

To show this we first have to argue a number of properties of f and g, most of which are

implicit in, or can be read out of, the statement that limx→∞ f
′(x)/g′(x) exists and is finite;

verifying them all formally may be considered a good exercise in working with the definitions.

145As with the earlier version of L’Hôpital’s rule, indeterminates of the form ∞/∞ can have any limit, finite

or infinite, or no limit. Consider, for example,

• limx→∞
cx
x = c, where c can be any real;

• limx→∞
±x2

x = ±∞; and

• limx→∞
x(2+sin x)

x , which does not exist.
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• At all sufficiently large number, f is continuous;

• the same for g;

• for all sufficiently large x, g′(x) 6= 0; and

• if x > N and N is sufficiently large, then g(x)− g(N) 6= 0 (this follows from Rolle’s

theorem: if N is large enough that g′(c) 6= 0 for all c > N , then if g(x) = g(N) Rolle’s

theorem would imply that g′(y) = 0 for some c ∈ (N, x), a contradiction).

Now write
f(x)

g(x)
=
f(x)− f(N)

g(x)− g(N)
· f(x)

f(x)− f(N)
· g(x)− g(N)

g(x)
. (?)

For each fixed N , the fact that limx→∞ f(x) = ∞ says that eventually (for all sufficiently

large x) f(x)− f(N) 6= 0, so it makes sense to talk about limx→∞ f(x)/(f(x)− f(N)); and

(again since limx→∞ f(x) = ∞) we have limx→∞ f(x)/(f(x) − f(N)) = 1. Similarly (since

limx→∞ g(x) =∞) we have limx→∞(g(x)− g(N))/g(x) = 1. In both limits calculated here,

we are using that N is fixed, so that f(N), g(N) are just fixed numbers.

Now for any N that is large enough that f and g are both continuous on [N,∞) and

differentiable on (N,∞), with g′(x) 6= 0 for any x > N and g(x)− g(N) 6= 0 for any x > N

(such an N exists, by our previous observations), the Cauchy Mean Value Theorem tells us

that there is c ∈ (N, x) with
f(x)− f(N)

g(x)− g(N)
=
f ′(c)

g′(c)
.

Because limx→∞ f
′(x)/g′(x) = L, we can make the first term in (?) be as close as we want to

L; and by then choosing x sufficiently large, we can make the second and third terms in (?)

be arbitrarily close to 1. In this way, the product of the three terms can be made arbitrarily

close to L.

Good examples of the use of this more general form of L’Hôpital’s rule are not so easy to

come by at the moment; the rule really shows its strength when we deal with the exponential,

logarithm and power functions, which we won’t see until later. If you know about these

functions, then the following example will make sense; if not, just ignore it.

Consider f(x) = (log x)/x146 What does this look like for large x? It’s an indeterminate of

the form ∞/∞, so by L’Hôpital’s rule the limit limx→∞(log x)/x equals limx→∞(log′ x)/x′ =

limx→∞(1/x)/1 = limx→∞ 1/x, as long as this limit exists. Since this limit exists and equals

146Here log : (0,∞)→ R is the natural logarithm function, which has the property that if log x = y then

x = ey, where e is a particular real number, approximately 2.71828, called the base of the natural logarithm.

We’ll see why such an odd looking function is “natural” next semester. The properties of log that we’ll use in

this example are that limx→∞ log x =∞, and that log′(x) = 1/x.
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0, it follows that

lim
x→∞

log x

x
= 0.147

Going to Desmos and looking at the graphs of f(x) = log x (entered as ln x) and g(x) = x,

it seems pretty clear that for even quite small x, log x is dwarfed by x, so it is not surprising

that the limit is 0. On the other hand, looking at the graphs of f(x) = (log x)2 and g(x) =
√
x,

it’s less clear what the limit

lim
x→∞

(log x)2

√
x

might be. Looking at x up to about, say, 180, it seems that f(x) is growing faster than
√
x,

but for larger values of x the trend reverses, and at about x = 5, 500, g(x) has caught up

with f(x), and from there on seems to outpace it. This suggests that the limit might be

0. We can verify this using L’Hôpital’s rule. With the usual caveat that the equalities are

valid as long as the limits actually exist (which they will all be seen to do, by applications of

L’Hôpital’s rule, working from the back) we have

lim
x→∞

(log x)2

√
x

= lim
x→∞

2(log x)(1/x)

1/(2
√
x)

= lim
x→∞

4 log x√
x

= lim
x→∞

4/x

1/(2
√
x)

= lim
x→∞

8√
x

= 0.

9.5 Convexity and concavity

Knowing that f ′(x) ≥ 0 for all x ∈ [0, 1] tells us that f is (weakly) increasing on [0, 1], but

that doesn’t tell the whole story. Below there is illustrated the graphs of three functions,

• f(x) = x3

• g(x) =
√
x and

• h(x) = 1
2

+ 4
(
x− 1

2

)3
,

all of which are increasing on [0, 1], but that otherwise look very different from each other.

147What about limx→∞ x1/x? Write x1/x = elog(x
1/x) = e(log x)/x. Since (log x)/x approaches 0 as x gets

larger, it seems reasonable that e(log x)/x approaches e0 = 1; so limx→∞ x1/x = 1. This is a very typical

application of L’Hôpital’s rule: we have two parts of a function that are competing with each other (in this

case the x in the base, causing x1/x to grow larger as x grows, and the 1/x in the exponent, causing x1/x to

grow smaller as x grows), and L’Hôpital’s rule (often) allows for a determination of which of the two “wins”

in the limit.
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The fine-tuning of the graph of a function “bulges”’ is captured by the second derivative.

Before delving into that, we formalize what we mean by the graph “bulging”.

Let f be a function whose domain includes the interval I.

Definition of a function being convex Say that f is strictly convex, or just convex148,

on I if for all a, b ∈ I, a < b, and for all t, 0 < t < 1,

f((1− t)a+ tb) < (1− t)f(a) + tf(b).

If instead f((1− t)a+ tb) ≤ (1− t)f(a) + tf(b) for all a, b and t, say that f is weakly

convex on the interval.

Definition of a function being concave Say that f is strictly concave, or just concave149,

on I if for all a, b ∈ I, a < b, and for all t, 0 < t < 1,

f((1− t)a+ tb) > (1− t)f(a) + tf(b).

If instead f((1− t)a+ tb) ≥ (1− t)f(a) + tf(b) for all a, b and t, we say that f is weakly

concave on the interval.

Notice that as t varies from 0 to 1, the value of (1− t)a+ tb varies from a to b. The point

((1− t)a+ tb, f((1− t)a+ tb))

148Just as with “increasing”, there is no universal convention about the meaning of the word “convex”,

without a qualifying adjective. By the word “convex”, some people (including Spivak and me) mean what in

the definition above is called “strictly convex”, and others mean what above is called “weakly convex”. It’s a

slight ambiguity that you have to learn to live with.
149Some authors, especially of 1000-page books called “Calculus and early transcendental functions, 45th

edition”, use “concave up” for what we are calling “convex”, and “concave down” for what we are calling

“concave”. These phrases (the “up”-“down” ones) are almost never used in discussions among contemporary

mathematicians.
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is a point on the graph of the function f , while the point

((1− t)a+ tb, (1− t)f(a) + tf(b))

is a point on the secant line to the graph of the function f between the points (a, f(a)) and

(b, f(b)). So the graphical sense of convexity is that

f is convex on I if the graph of f lies below the graphs of all its secant lines on I.

Illustrated below is the graph of f(x) = x3, which lies below all its secant lines between 0

and 1, and so fairly clearly is convex on that interval. The picture below shows one secant

line, from (0.4, 0.64) to (0.8, 0.512).

It is worth noting that convexity/concavity has nothing to do with f increasing or decreasing.

It should be fairly clear from the graph of s(x) = x2 that this function is convex on the

entire interval (−∞,∞), even though it is sometimes decreasing and sometimes increasing.

(The picture below shows a secant line lying above the graph of s, that straddles the local

minimum).
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On the other hand, it’s clear that f(x) = x3 is concave on (−∞, 0] and convex on [0,∞),

though it is increasing throughout. (The picture below shows one secant line, on the negative

side, lying below the graph of f , and another, on the positive side, lying above).

As was implicitly assumed in the last example discussed, just as convexity graphically

means that secant lines lie above the graph, we have a graphical interpretation of concavity:

f is concave on I if the graph of f lies above the graphs of all its secant lines on I.

In terms of proving properties about convexity and concavity, there is an easier way to

think about concavity. The proof of the following very easy claim is left to the reader; it is

evident from thinking about graphs.

Claim 9.15. f is concave of an interval I if and only if −f is convex on I.

There is an alternate algebraic characterization of convexity and concavity, that will be

very useful when proving things. If f is concave on I, and a, b ∈ I with a < b, then it seems

clear from a graph that as x runs from a to b, the slope of the secant line from the point

(a, f(a)) to the point (x, f(x)) is increasing. The picture below illustrates this with the square

function, with a = −1 and b = 1. The slope of the secant line from (−1, 1) to (0, 0) is −1;

from (−1, 1) to (1/2, 1/4) is −1/2; and from (−1, 1) to (1, 1) is 0.
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We capture this observation in the following claim, which merely says that as x runs from

a to b, the slopes of all the secant lines are smaller than the slope of the secant line from

(a, f(a)) to (b, f(b)).

Claim 9.16. • f is convex on I if and only if for all a, b ∈ I with a < b, and for all

x ∈ (a, b) we have
f(x)− f(a)

x− a
<
f(b)− f(a)

b− a
. (?)

Also150, f is convex on I if and only if for all a, b ∈ I with a < b, and for all x ∈ (a, b)

we have
f(b)− f(a)

b− a
<
f(b)− f(x)

b− x
.

• f is concave on I if and only if for all a, b ∈ I with a < b, and for all x ∈ (a, b) we have

f(x)− f(a)

x− a
>
f(b)− f(a)

b− a
>
f(b)− f(x)

b− x
.

Proof: The key point is that any x ∈ (a, b) has a unique representation as x = (1− t)a+ tb

with 0 < t < 1, specifically with

t =
x− a
b− a

(it is an easy check that this particular t works; that it is the unique t that works follows

from the fact that for t 6= t′, (1− t)a + tb 6= (1− t′)a + t′b). So, f being convex on I says

precisely that for a < x < b ∈ I,

f(x) <

(
1− x− a

b− a

)
f(a) +

(
x− a
b− a

)
f(b).

150This next clause of the claim says that convexity also means that as x runs from a to b, the slopes of the

secant lines from (x, f(x)) to (b, f(b)) increase. This can also easily be motivated by a picture.
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Subtracting f(a) from both sides, and dividing across by x− a, this is seen to be equivalent

to
f(x)− f(a)

x− a
<
f(b)− f(a)

b− a
,

as claimed.

But now also note that(
1− x− a

b− a

)
f(a) +

(
x− a
b− a

)
f(b) =

(
b− x
b− a

)
f(a) +

(
1− b− x

b− a

)
f(b),

so f being convex on I also says precisely that for a < x < b ∈ I,

f(x) <

(
b− x
b− a

)
f(a) +

(
1− b− x

b− a

)
f(b),

which after similar algebra to before is equivalent to

f(b)− f(a)

b− a
<
f(b)− f(x)

b− x
,

also as claimed.

We now move on to the concavity statements. f being concave means that −f is convex,

which (by what we have just proven) is equivalent to

(−f)(b)− (−f)(a)

b− a
<

(−f)(b)− (−f)(x)

b− x

for a < x < b ∈ I, and (multiplying both sides by −1) this is equivalent to

f(b)− f(a)

b− a
>
f(b)− f(x)

b− x
;

and the other claimed inequality for concavity is proved similarly.

This alternate characterization of convexity and concavity allows us to understand the

relationship between convexity and the derivative.

Theorem 9.17. Suppose that f is convex on an interval. If f is differentiable at a and b in

the interval, with a < b, then f ′(a) < f ′(b) (and so, if f is differentiable everywhere on the

interval, then f ′ is increasing on the interval).

Proof: We will use our alternate characterization for convexity to show that

f ′(a) <
f(b)− f(a)

b− a
< f ′(b).

Pick any b′ ∈ (a, b). Applying our alternate characterization on concavity on the interval

[a, b′], we have that for any x ∈ (a, b′),

f(x)− f(a)

x− a
<
f(b′)− f(a)

b′ − a
.
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Because f is differentiable at a, we have151 that

f ′(a) = f ′+(a) = lim
x→a+

f(x)− f(a)

x− a
≤ f(b′)− f(a)

b′ − a
.

But now, also applying our alternate characterization of convexity on the interval [a, b], and

noting that a < b′ < b, we have

f(b′)− f(a)

b′ − a
<
f(b)− f(a)

b− a
.

It follows that

f ′(a) <
f(b)− f(a)

b− a
.

So far, we have only used the first part of the alternate characterization of convexity (the

part marked (?) above). Using the second part, an almost identical argument (which is left

as an exercise) yields
f(b)− f(a)

b− a
< f ′(b),

and we are done.

There is of course a similar theorem relating concavity and the derivative, which can be

proven by using the fact that f is concave iff −f is convex (it is left as an exercise).

Theorem 9.18. Suppose that f is concave on an interval. If f is differentiable at a and b

in the interval, with a < b, then f ′(a) > f ′(b) (and so, if f is differentiable everywhere on the

interval, then f ′ is decreasing on the interval).

There is a converse to these last two theorems.

Theorem 9.19. Suppose that f is differentiable on an interval. If f ′ is increasing on the

interval, then f is convex, which if f ′ is decreasing, then f is concave.

Before proving this, we make some comments.

• We are now in a position to use the first derivative to pin down intervals where a

function is convex/concave — the intervals of convexity are precisely the intervals where

f ′ is increasing, and the intervals of concavity are those where f ′ is decreasing. Of

course, the easiest way to pin down intervals where f ′ is increasing/decreasing is to

look at the derivative of f ′ (if it exists). That leads to the following corollary.

Corollary 9.20. If f is twice differentiable, then the intervals where f ′′ is positive (so

f ′ is increasing) are the intervals of convexity, and the intervals where f ′′ is negative

(so f ′ is decreasing) are the intervals of concavity.

151In the next line, we use a fact that we may not have formally proved, but is easy to prove (and very

useful): suppose that f(x) < M (for some constant M) for all x > a, and that limx→a+ f(x) exists. Then

limx→a+ f(x) ≤M .
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The places where f transitions from being concave to convex or vice-versa (usually, but

not always, where f ′′ is zero), are called points of inflection.

• As an example, consider f(x) = x/(1 + x2). Its domain is all reals. It goes to 0 as x

goes to both +∞ and to −∞. We have

f ′(x) =
1− x2

(1 + x2)2
,

which is

– negative for x < −1 (so x is decreasing on (−∞,−1)),

– positive for −1 < x < 1 (so x is increasing on (−1, 1)), and

– negative for x > 1 (so x is decreasing on (1,∞)).

It follows that there is a local minimum at (−1,−1/2) and a local maximum at (1, 1/2).

We also have

f ′′(x) =
2x(x2 − 3)

(1 + x2)3
,

which is

– negative for x < −
√

3 (so x is concave on (−∞,−
√

3)),

– positive for −
√

3 < x < 0 (so x is convex on (−
√

3, 0)),

– negative for 0 < x <
√

3 (so x is concave on (0,
√

3)), and

– positive for
√

3 < x <∞ (so x is convex on (
√

3,∞)).

It follows that there is are points of inflection at (−
√

3,−
√

3/4) and at (
√

3,
√

3/4).

Based on all of this information, it is not surprising to see that Desmos renders the

graph of the function as follows.
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Before proving Theorem 9.19, we need a preliminary lemma, the motivation for which

which is that if f is convex between a and b, and f(a) = f(b), then we expect the graph of f

to always be below the line joining (a, f(a)) to (b, f(b)).

Lemma 9.21. Suppose f is differentiable on an interval, with f ′ increasing on the interval.

For a < b in the interval, if f(a) = f(b) then for all x ∈ (a, b), f(x) < f(a) and f(x) < f(b).

Proof: Suppose there is an x ∈ (a, b) with f(x) ≥ f(a) (and so also f(x) ≥ f(b)). Then

there is a maximum point of f on [a, b] at some particular x ∈ (a, b). This is, of course, also

a maximum point of f on (a, b). Since f is differentiable everywhere, by Fermat principle

f ′(x) = 0. By the Mean Value Theorem applied to [a, x], there is x′ ∈ (a, x) with

f ′(x′) =
f(x)− f(a)

x− a
. (?)

Now f ′ is increasing on [a, b] (by hypothesis), so f ′(x′) < f ′(x) = 0. But f(x) ≥ f(a) (since

x is a maximum point for f on [a, b]), so (f(x) − f(a))/(x − a) ≥ 0. This contradicts the

equality in (?) above.152

Proof (of Theorem 9.19): Recall that we wish to show that if f is differentiable on an

interval, and if f ′ is increasing on the interval, then f is convex (the concavity part is left as

an exercise; it follows as usual from the observation that f is concave iff −f is convex).

Given a < b in the interval, set

g(x) = f(x)− f(b)− f(a)

b− a
(x− a).

We have g(a) = g(b) (both are equal to f(a)). We also have

g′(x) = f ′(x)− f(b)− f(a)

b− a
,

which is increasing on the interval, since f ′ is. It follows from the preliminary lemma that for

all x ∈ (a, b), we have g(x) < g(a) and g(x) < g(b). The first of these says

f(x)− f(b)− f(a)

b− a
(x− a) < f(a),

or
f(x)− f(a)

x− a
<
f(b)− f(a)

b− a
,

which is the characterization (?) of convexity from earlier; so f is convex on the interval.153

152Note that we didn’t actually use that f(a) = f(b) in this proof, so what we actually showed was that if

f is differentiable on an interval, with f ′ increasing on the interval, then for any a < b in the interval, for

all x ∈ (a, b) we have f(x) < max{f(a), f(b)}. The weaker result stated is, however, easier to comprehend

visually, and it is the case that we will use in a moment.
153The second inequality, g(x) < g(b), similarly reduces to the other characterization of convexity, but that

isn’t needed here.
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