Statistics for the Life Sciences

Math 20340 Section 01, Fall 2008

Homework 2 Solutions

- 4.37:

The experiment here is to pick one of the possible ways in which the board votes 5-3 in favour. To construct a simple event, we need just selected the five people who voted in favour of the plaintiff; the unchosen three automatically become the three who voted against. There are $C_{5}^{8}=56$ ways to do this (note that we don't care about the order in which people voted), and so 56 simple events. In only one of those 56 do all 5 women vote in favour of plaintiff; so the probsbility of seeing this split is $1 / 56$.

- 4.38:

There are $C_{5}^{10}=252$ ways for the instructor to choose 5 questions (order doesn't matter). Of these 252 , only $C_{5}^{6}=6$ include only questions that the student has prepared. So he probability is $6 / 252 \approx .0238$.

- 4.42:
- c: $B \cap C=\left\{E_{4}\right\}$, so $P(B \cap C)=.2$
- f: The simple event that is in A and also in B is E_{1} (one simple event) and B consists of 4 events, so $P(A \mid B)=1 / 4$
- h: $A \cap B=\left\{E_{1}\right\}$ so $(A \cap B)^{c}=\left\{E_{2}, E_{3}, E_{4}, E_{5}\right\}$ and $P\left((A \cap B)^{c}\right)=4 / 5$
- 4.43:
- b: $P\left((A \cap B)^{c}\right)=1-P(A \cap B)=1-.2=.8(=4 / 5)$
- 4.44:
- a: $P(A \mid B)=P(A \cap B) / P(B)=.2 / .8=.25(=1 / 4)$
- 4.45:

$$
\begin{aligned}
& -\mathbf{c}: P(B \cup C)=P(B)+P(C)-P(B \cap C) \text { so } P(B \cap C)=P(B)+P(C)-P(B \cup C)= \\
& \quad .8+.4-1=.2
\end{aligned}
$$

- 4.46:
- a: $P(A \mid B)=.25$ and $P(A)=.4$, so the events are NOT independent
- b: $A \cap B=\left\{E_{1}\right\}$ which is not the empty set, so the events are NOT mutually exclusive
- 4.50:
- a: Since the events are mutually exclusive, the probability of the intersection is 0
- b: Since the events are mutually exclusive, the probability of the union is the sum of the probabilities, so $P(A \cup B)=.3+.5=.8$
- 4.52:
- a: . 49
- b: . 8
- c: . 34
- d: . 95
- e: $.34 / .8=17 / 40$
- f: $.34 / .49=34 / 49$
- 4.56:
- a: . 4
- b: . 37
- c: . 1
- d: . 67
- e: . 6
- f: . 33
- g: . 9
- h: . $1 / .37 \approx .27$
- i: $.1 / .4=.25$
- 4.60:
- a: $S=\{$ Starbucks $\}, M=\{$ Mocha $\}$. We want $P(S \cap M)$. Since S and M are given to be independent, $P(S \cap M)=P(S) P(M)=.7 X .6=.42$
- \mathbf{b} : Yes, it is given in the question that choice of drink is not influenced by choice of coffee shop
- c: $P=\{$ Peets $\}$. Want $P(P \mid M)=P(P \cap M) / P(M)=(.3 * .6) / .6=.3$. Or, easier: $P(P \mid M)=P(P)=.3$ since P and M are independent
- d: $P(S \cup M)=P(S)+P(M)-P(S \cap M)=.7+.6-.42=.88$

- 4.62:

Let S be the event that a randomly chosen person is a smoker, and L the event that a randomly chosen person dies from lung cancer. We are given:

- $P(S)=.2\left(\right.$ so $\left.P\left(S^{c}\right)=.8\right)$
- $P(L \mid S) \approx 10 P\left(L \mid S^{c}\right)$
- $P(L)=.006$

A person who dies of lung cancer either smokes or doesn't (but not both), so $P(L)=$ $P(L \cap S)+P\left(L \cap S^{c}\right)$. Since $P(L \cap S)=P(S) P(L \mid S)=.2 P(L \mid S)$ and $P(L \cap$ $\left.S^{c}\right)=P\left(S^{c}\right) P\left(L \mid S^{c}\right)=.8 P\left(L \mid S^{c}\right)$ we get $.006=.2 P(L \mid S)+.8 P\left(L \mid S^{c}\right)$. Solving this simultaneously with $P(L \mid S) \approx 10 P\left(L \mid S^{c}\right)$ we get $.006 \approx 2 P\left(L \mid S^{c}\right)+.8 P\left(L \mid S^{c}\right)$ or $P\left(L \mid S^{c}\right) \approx .00214$ and so $P(L \mid S) \approx .0214$.

Note: If you interpret the question as saying that $P(L \cap S) \approx 10 P\left(L \cap S^{c}\right)$ (as I did during Monday's office hours) then from $P(L)=P(L \cap S)+P\left(L \cap S^{c}\right)$ we get $.006=11 P\left(L \cap S^{c}\right)$ so $P\left(L \cap S^{c}\right) \approx .000545$, and $P(L \cap S) \approx .00545$, so that $P(L \mid S)=P(L \cap S) / P(S) \approx$ $.00545 / .2 \approx .02725$. I think this is a wrong interpretation, but the grader won't mark down for it since I made the mistake in office hours.

- 4.65:
- d: 88/154
- e: $44 / 67$
- f: $23 / 35$

- 4.67:

- a: $.8 X .8=.64$ (throws are independent)
- b: Probability that Shaq makes only first of two: $.53 X .47=.2491$. Probability that Shaq makes only second of two: $.47 X .53=.2491$. These are the two mutually exclusive events that combine to the event of Shaq making exactly one; so probability that Shaq makes exactly one: $.2491+.2491=.4982$.
- c: $A=\{$ Shaq makes both $\} . B=\{$ Jason makes neither\}. $P(A)=.53 * .53=.2809$. $P(B)=.2 * .2=.04$. Since A and B are independent, $P(A \cap B)=P(A) P(B)=$.011246

