Statistics for the Life Sciences

Math 20340 Section 01, Fall 2008

Homework 2 Solutions

• **4.37**:

The experiment here is to pick one of the possible ways in which the board votes 5-3 in favour. To construct a simple event, we need just selected the five people who voted in favour of the plaintiff; the unchosen three automatically become the three who voted against. There are $C_5^8 = 56$ ways to do this (note that we don't care about the order in which people voted), and so 56 simple events. In only one of those 56 do all 5 women vote in favour of plaintiff; so the probability of seeing this split is 1/56.

• **4.38**:

There are $C_5^{10} = 252$ ways for the instructor to choose 5 questions (order doesn't matter). Of these 252, only $C_5^6 = 6$ include only questions that the student has prepared. So he probability is $6/252 \approx .0238$.

- 4.42:
 - c: $B \cap C = \{E_4\}$, so $P(B \cap C) = .2$
 - **f**: The simple event that is in A and also in B is E_1 (one simple event) and B consists of 4 events, so P(A|B) = 1/4

- h:
$$A \cap B = \{E_1\}$$
 so $(A \cap B)^c = \{E_2, E_3, E_4, E_5\}$ and $P((A \cap B)^c) = 4/5$

• 4.43:

- **b**:
$$P((A \cap B)^c) = 1 - P(A \cap B) = 1 - .2 = .8 (= 4/5)$$

• 4.44:

_

• **a**:
$$P(A|B) = P(A \cap B)/P(B) = .2/.8 = .25 (= 1/4)$$

• 4.45:

- c:
$$P(B \cup C) = P(B) + P(C) - P(B \cap C)$$
 so $P(B \cap C) = P(B) + P(C) - P(B \cup C) = .8 + .4 - 1 = .2$

• 4.46:

- a: P(A|B) = .25 and P(A) = .4, so the events are NOT independent
- **b**: $A \cap B = \{E_1\}$ which is not the empty set, so the events are NOT mutually exclusive
- 4.50:
 - a: Since the events are mutually exclusive, the probability of the intersection is 0
 - **b**: Since the events are mutually exclusive, the probability of the union is the sum of the probabilities, so $P(A \cup B) = .3 + .5 = .8$
- 4.52:
 - a: .49
 b: .8
 c: .34
 d: .95
 e: .34/.8 = 17/40
 f: .34/.49 = 34/49
- 4.56:
 - a: .4
 b: .37
 c: .1
 d: .67
 e: .6
 f: .33
 g: .9
 h: .1/.37 ≈ .27
 i: .1/.4 = .25
- 4.60:
 - a: $S = \{\text{Starbucks}\}, M = \{\text{Mocha}\}$. We want $P(S \cap M)$. Since S and M are given to be independent, $P(S \cap M) = P(S)P(M) = .7X.6 = .42$
 - b: Yes, it is given in the question that choice of drink is not influenced by choice of coffee shop
 - c: $P = \{\text{Peets}\}$. Want $P(P|M) = P(P \cap M)/P(M) = (.3 * .6)/.6 = .3$. Or, easier: P(P|M) = P(P) = .3 since P and M are independent
 - d: $P(S \cup M) = P(S) + P(M) P(S \cap M) = .7 + .6 .42 = .88$

• 4.62:

Let S be the event that a randomly chosen person is a smoker, and L the event that a randomly chosen person dies from lung cancer. We are given:

- P(S) = .2 (so $P(S^c) = .8$) - $P(L|S) \approx 10P(L|S^c)$ - P(L) = .006

A person who dies of lung cancer either smokes or doesn't (but not both), so $P(L) = P(L \cap S) + P(L \cap S^c)$. Since $P(L \cap S) = P(S)P(L|S) = .2P(L|S)$ and $P(L \cap S^c) = P(S^c)P(L|S^c) = .8P(L|S^c)$ we get $.006 = .2P(L|S) + .8P(L|S^c)$. Solving this simultaneously with $P(L|S) \approx 10P(L|S^c)$ we get $.006 \approx 2P(L|S^c) + .8P(L|S^c)$ or $P(L|S^c) \approx .00214$ and so $P(L|S) \approx .0214$.

Note: If you interpret the question as saying that $P(L \cap S) \approx 10P(L \cap S^c)$ (as I did during Monday's office hours) then from $P(L) = P(L \cap S) + P(L \cap S^c)$ we get $.006 = 11P(L \cap S^c)$ so $P(L \cap S^c) \approx .000545$, and $P(L \cap S) \approx .00545$, so that $P(L|S) = P(L \cap S)/P(S) \approx .00545/.2 \approx .02725$. I think this is a wrong interpretation, but the grader won't mark down for it since I made the mistake in office hours.

- **4.65**:
 - d: 88/154
 - e: 44/67
 - **f**: 23/35
- **4.67**:
 - **a**: .8X.8 = .64 (throws are independent)
 - **b**: Probability that Shaq makes only first of two: .53X.47 = .2491. Probability that Shaq makes only second of two: .47X.53 = .2491. These are the two mutually exclusive events that combine to the event of Shaq making exactly one; so probability that Shaq makes exactly one: .2491 + .2491 = .4982.
 - c: $A = \{$ Shaq makes both $\}$. $B = \{$ Jason makes neither $\}$. P(A) = .53 * .53 = .2809. P(B) = .2 * .2 = .04. Since A and B are independent, $P(A \cap B) = P(A)P(B) = .011246$