# Statistics for the Life Sciences 

Math 20340 Section 01, Fall 2008<br>Homework 4 Solutions

- 5.40:
- a: . 109
- b: . 958
- c: . 257
- d: . 809
- 5.42: $n=25, p=.05$ so $\mu=n p=1.25$ for Poisson approximation
- $p(0)=.2865 \ldots$ using Poisson; actually $.277 \ldots$
- $p(1)=.35813 \ldots$ using Poisson; actually $.365 \ldots$
- 5.43: Model number of near misses by Poisson with $\mu=5$
- a: $p(0)=.007$
- b: $p(5)=.171$
- $\mathbf{c}: p(\geq 5)=1-p(\leq 4)=.56$
- 5.47:

Probability that count will exceed maximum is probability that Poisson with $\mu=2$ is six or greater; this is .017 ; so it is unlikely that count will exceed maximum.

- 5.48: Model number of occurrences per 100,000 as Poisson with $\mu=2.5$
- a: $p(\leq 5)=.958$
- b: $p(>5)=1-p(\leq 5)=.042$
- c: At most 5 ( $95.8 \%$ )
- 6.4:
- a: . 8384
- b: . 9974
- 6.6:
- a: . 9901
- b: . 95
- c: . 025
- d: . 9902
- 6.10:
- a: 1.645
- b: 2.575
- 6.13:
- a: . 1596
- b: . 1151
- c: . 1359
- 6.14:

$$
P(x>7.5)=P((x-\mu) / 2>(7.5-\mu) / 2)=P(z>(7.5-\mu) / 2)
$$

This probability is given to be .8023 . From a standard normal table, $P(z>-.85)=.8023$. So

$$
(7.5-\mu) / 2=-.85
$$

or $\mu=9.2$

- 6.19: Let $x$ be height of randomly selected man. $x$ is normal with mean 69 , standard deviation 3.5. Standardizing, $(x-69) / 3.5$ is a standard normal.
- a: Taller than $6^{\prime}$ is same as taller than 72 inches, that is 4 inches or $3 / 3.5=.857$ standard deviations above mean. $p(z>.857)=.1949$, so about $12.7 \%$ of men are $6^{\prime}$ or taller
- b: $p\left(5^{\prime} 8^{\prime \prime} \leq x \leq 6^{\prime} 1^{\prime \prime}\right)=p(68 \leq z \leq 73)=p(-1 / 3.5 \leq z \leq 4 / 3.5)=p(-.29 \leq$ $z \leq 1.14)=.487$
- c: $5^{\prime} 11 "$ is 71 inches, only .57 standard deviations from the mean; not unusual
- d: $18 / 42=.428$ is observed proportion among presidents; .127 is proportion among general population. Observed proportion does seem unusual
- 6.23:
- 1300 is 1.01 standard deviations above mean; probability of exceeding this is . 1562
- 1500 is 3.03 standard deviations above mean; probability of exceeding this is . 0012
- 6.29: More than 100 is more than $15 / 9=1.66 \ldots$ standard deviations above mean. Probability of this is .0475
- 6.30: With mean set to $\mu$, and $x$ the amount the grain per container,
$p($ overflow $)=p(x>2000)=p((x-\mu) / 25.7>(2000-\mu) / 25.7)=p(z>(2000-\mu) / 25.7)$.
We want this to be .01 . From a standard normal table, $p(z>2.33)=.01$, so want

$$
(2000-\mu) / 25.7=2.33
$$

or $\mu=1940.12$.

