Statistics for the Life Sciences

Math 20340 Section 01, Fall 2009

Homework 9 Solutions

• 9.3:

- **a**: *z* > 2.33
- **b**: z > 1.96 or z < -1.96 (also could be written as |z| > 1.96)
- **− c**: *z* < −2.33
- d: z > 2.58 or z < -2.58 (also could be written as |z| > 2.58)
- 9.6:
 - **a**: $H_0: \mu = 2.3$ (or, equally appropriate, $H_0: \mu \le 2.3$) versus $H_a: \mu > 2.3$
 - **b**: Reject null if test statistic $\frac{\bar{x}-2.3}{.29/\sqrt{35}} > 1.64$. This is same as: reject null if $\bar{x} > 2.38...$
 - **c**: $s = .29/\sqrt{35} \approx .049$
 - d: My intuition was that 2.4 is a reasonable value. But test statistic is 2.04..., so in fact we should reject null at 5% level of significance
- **9.7**:
 - **a**: *p*-value is P(z > 2.04) = .0207
 - **b**: Reject H_0 (*p*-value is less than .05)
 - c: Yes
- **9.8**:
 - a: At 5% significance, as we've previously observed, null would be rejected as long as $\bar{x} > 2.38...$
 - **b**: We will accept H_0 if $\bar{x} \le 2.38$. If the true mean is 2.4, then the distribution of \bar{x} is normal with mean 2.4 and standard error .049 (calculated in Problem 9.6). So the probability of (incorrectly) accepting H_0 in this case is $P(\bar{x}) \le 2.38$) = $P(z \le (2.38 2.4)/.049 = -.4) = .3446$. Note that in this case when we standardize we use $\mu = 2.4$, because that is the true mean.

- c: For $\beta = 2.3$, using the same approach as in the last part, we are looking at $P(z \le (2.38 2.3)/.049) = P(z \le 1.63) = .9485$. (This answer should have been exactly .95, but I've made some small rounding error using 2.38 instead of 2.38...). For $\beta = 2.5$, we are looking at $P(z \le (2.38 2.5)/.049) = P(z \le -2.45) = .0071$. For $\beta = 2.6$, we are looking at $P(z \le (2.38 2.5)/.049) = P(z \le -4.49) = 0$.
- d: The power 1β increases from close to 5% when μ is close to 2.3, to close to 100% when $\mu = 2.6$.

• 9.12:

- a: We want to test H_0 : $\mu = 5$ versus H_a : $\mu \neq 5$. Test statistic is $(11.17 5)/(3.9/\sqrt{50}) = 11.18$. Since this is (much) greater than 1.96, we reject H_0 at 5% significance level.
- **b**: *p*-value is P(z > 11.18) = 0, so using this we also reject at 5% significance level.
- 9.13:
 - **– a**: $H_0: \mu = 80$
 - **– b**: $H_a : \mu \neq 80$
 - c: Test statistic $(79.7 80)/(.8/\sqrt{100}) = -3.75$. Since this is less that -1.96, we *reject* the null at 5% significance; there is evidence to suggest that the potency is not 80%
- 9.14: $H_0: \mu = 7$; $H_a: \mu < 7$. Test statistic is $(6.7 7)/(2.7/\sqrt{80}) = -.99...$ This is *not* below -1.645, so there is *not* evidence to reject the null at 5% significance.
- 9.17: $H_0: \mu = 5.97; H_a: \mu > 5.97$. Test statistic is $(9.8 5.97)/(1.95/\sqrt{31}) = 10.93$. This is (much) greater that 1.645, so there is strong evidence to reject null at 5% significance.
- **9.18**:
 - **a**: $H_0: \mu_1 = \mu_2; H_a: \mu_1 > \mu_2$
 - b: One-tailed
 - **c**: Test statistic is $\frac{\bar{x}_1}{-} \bar{x}_2 \sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}} = 2.087...$
 - d: *p*-value is P(z > 2.08) = .0188. At 1% significance, there is *not* evidence to suggest a difference
 - e: Rejection region is TS > 2.33. Since test statistic is 2.08, there is not evidence to reject null
- **9.20**:

The described process (deciding on which test to use based on the observed date) doubles the probability of type I error to .1.

If H_0 is true, that is, if $\mu_1 = \mu_2$, then half the time we will have $\bar{x}_1 > \bar{x}_2$ and half the time we will have $\bar{x}_2 > \bar{x}_1$ (I'm ignoring the possibility that $\bar{x}_1 = \bar{x}_2$, which will happen

very infrequently). Let's focus on what happens if we find that $\bar{x}_1 > \bar{x}_2$. In this case, the proposed plan is to run the one sided test $H_0 : \mu_1 = \mu_2$ versus $H_a : \mu_1 > \mu_2$ at significance level α . We want to figure out what is the probability that we reject H_0 given that it is true. Since this is a one-sided test, this is $P(TS > z_\alpha)$, which we might think is just α (that, after all, is the definition of the significance α). *BUT*, we are computing this probability conditioned on some extra information, namely, the information that $\bar{x}_1 > \bar{x}_2$. So actually the probability of rejecting H_0 in this case is $P(TS > z_\alpha | \bar{x}_1 > \bar{x}_2) = P(TS > z_\alpha \text{ and } \bar{x}_1 > \bar{x}_2)/P(\bar{x}_1 > \bar{x}_2)$. Since $P(\bar{x}_1 > \bar{x}_2) = .5$, this is $2P(TS > z_\alpha \text{ and } \bar{x}_1 > \bar{x}_2)$ If we know that $TS > z_\alpha$, then we automatically know that $\bar{x}_1 > \bar{x}_2$; so $P(TS > z_\alpha \text{ and } \bar{x}_1 > \bar{x}_2) = P(TS > z_\alpha \text{ and } \bar{x}_1 > \bar{x}_2) = P(TS > z_\alpha \text{ and } \bar{x}_1 > \bar{x}_2) = P(TS > z_\alpha)$ and the probability of rejecting H_0 when it is true in this case (the case $\bar{x}_1 > \bar{x}_2$) is 2α , not α . In the other case (the case $\bar{x}_1 < \bar{x}_2$), the probability of rejecting H_0 when it is true is also 2α . Either way, the probability of type I error is 2α , which is .1 if $\alpha = .05$.

- 9.23:
 - **a**: The test statistic is -2.26. The *p*-value is .0238 (remember that this is two-tailed test); we should reject H_0 at 5% significance
 - **b**: (-3.55, -.25) is the 95% confidence interval (note that 0 is not in this interval, which is why we rejected H_0)
 - c: Since -5 (and 5) is not in the confidence interval, the difference between the two means is not of practical importance
- 9.27:
 - a: The test statistic is -3.18. The *p*-value is .0014 (remember that this is two-tailed test); there is sufficient evidence to reject H_0 at 5% significance and conclude that there is a difference
 - **b**: (-3.01, -.71) is the 95% confidence interval. This agrees with the previous part; 0 is not in this interval
 - 9.30:
 - * **a**: $H_a : p < .3$ (this is what I want to establish evidence to prove); $H_0 : p = .3$ (this is what I have to accept unless evidence suggests otherwise).
 - * **b**: Standard Error is $\sqrt{p_0q_0/n} = \sqrt{.3 * .7/1000} = .01449....$ (Notice that I am using $p_0 = .3$ to compute the standard error, and not \hat{p} . The reason for this is that I am computing the standard error on the assumption that H_0 is true, so I don't need to approximate p I know it exactly.) Since $z_{.05} = 1.645$, we will accept H_0 for any value of \hat{p} above .3 1.645 * .01449... = .276.... This is the critical value.
 - * c: Since our observed \hat{p} is .279, which is greater than .276, there is *not* sufficient evidence to accept H_a at 5%.
 - 9.34:

- * **a**: This is tricky. It feels like we should take the geneticist's claim as the *alternative*, but then our null would be of the form " $p \neq p_0$ ", and we can only do statistics with a null of the form " $p = p_0$ ". I think we should look at it like this: the geneticist (an expert) is telling us that there is a sound theoretical reason for saying that p = .75, and we are interesting in seeing whether our observations provide sufficient evidence to refute the expert opinion. So $H_0 : p = .75$ versus $H_a : p \neq .75$ seems to be the way to go.
- * **b**: Test statistic: $\frac{.58-.75}{\sqrt{.75*.25/100}} = -3.93...;$ *p*-value is P(z > 3.93 or z < -3.93) = 0. Results significant at 1% level ... enough evidence to reject null in favour of alternative.
- 9.40: $H_0: p = .35$ versus $H_a: p \neq .35; \hat{p} = .41, n = 300$. Test statistic is $\frac{.41-.35}{\sqrt{.35*.65/300}} = 2.17...; p$ -value is P(z > 2.17 or z < -2.17) = .03. Results not significant at 1% level ... not enough evidence to reject null in favour of alternative.