Math 30210 - Introduction to Operations Research

Quiz 2 - Wednesday September 12, 2007
NAME: \qquad

Instructions: This is a closed-book quiz. Please do not use any notes.
A linear programming problem is in standard form if all variables are constrained to be non-negative, and all constraints are equalities with constant, non-negative right-hand side.

Convert the following LP (the diet problem from last week) into an LP in standard form.
Minimize

$$
3.8 K+6.2 C
$$

subject to $K, C \geq 0$ and

$$
\begin{aligned}
.1 K+.25 C & \geq 1 \\
K+.25 C & \geq \\
900 \leq 110 K+120 C & \leq 1500 .
\end{aligned}
$$

Solution:

We introduce three surplus variables, s_{1}, s_{2} and s_{3}, to turn the first two constraints and the left-hand inequality in the third constraint into equalities, and a slack variable s_{4} to turn the right-hand inequality in the third constraint into an equality. The complete LP becomes:

Minimize

$$
3.8 K+6.2 C
$$

subject to $K, C, s_{1}, s_{2}, s_{3}, s_{4} \geq 0$ and

$$
\begin{array}{clc}
.1 K+.25 C-s_{1} & = & 1 \\
K+.25 C-s_{2} & = & 5 \\
110 K+120 C-s_{3} & = & 900 \\
110 K+120 C+s_{4} & & 1500 .
\end{array}
$$

