Math 30210 - Introduction to Operations Research

Quiz 6 - Wednesday October 17, 2007

NAME:

\qquad

Instructions: This is a closed-book quiz. Please do not use any notes.
A certain linear programming problem is of the form: Maximize $r_{1} x+r_{2} y$ subject to $a_{1} x+b_{1} y \leq c_{1}$ and $a_{2} x+b_{2} y \leq c_{2}$ with $x, y \geq 0$ (and $c_{1}, c_{2} \geq 0$).

The optimal simplex tableau for the problem is shown below:

Basic	z	x	y	s_{1}	s_{2}	Soln.
Max	1	0	0	4	5	45
y	0	0	1	2	-1	2
x	0	1	0	-1	3	20

Since the two basic variables at the optimum are x and y, we see that the optimum is reached at the intersection of the two constraints.

1. Suppose that c_{1} is changed to $c_{1}+d_{1}$, and c_{2} is changed to $c_{2}+d_{2}$. What simultaneous conditions must be satisfied by d_{1} and d_{2} to ensure that the optimum is still the intersection of the two constraints?
2. Use the first part to show that if c_{1} is changed to $c_{1}+2$, and c_{2} is changed to $c_{2}+5$, then the optimum is still the intersection of the two constraints.
3. If c_{1} is changed to $c_{1}+2$, and c_{2} is changed to $c_{2}+5$, what does the optimum objective value change to?
