Math 30210 — Introduction to Operations Research

Quiz 6 – Wednesday October 17, 2007

NAME: _____

Instructions: This is a closed-book quiz. Please do not use any notes.

A certain linear programming problem is of the form: Maximize $r_1x + r_2y$ subject to $a_1x + b_1y \le c_1$ and $a_2x + b_2y \le c_2$ with $x, y \ge 0$ (and $c_1, c_2 \ge 0$).

The optimal simplex tableau for the problem is shown below:

Basic	z	x	y	s_1	s_2	Soln.
Max	1	0	0	4	5	45
y	0	0	1	2	-1	2
x	0	1	0	-1	3	20

Since the two basic variables at the optimum are x and y, we see that the optimum is reached at the intersection of the two constraints.

1. Suppose that c_1 is changed to c_1+d_1 , and c_2 is changed to c_2+d_2 . What simultaneous conditions must be satisfied by d_1 and d_2 to ensure that the optimum is still the intersection of the two constraints?

2. Use the first part to show that if c_1 is changed to $c_1 + 2$, and c_2 is changed to $c_2 + 5$, then the optimum is still the intersection of the two constraints.

3. If c_1 is changed to c_1+2 , and c_2 is changed to c_2+5 , what does the optimum objective value change to?