Decision time ...

It's 1 pm
You are at the Huddle, and haven't had lunch yet
There is a half-hour line at Subway, your favourite
There is a ten-minute line at Burger King
Lunch (either way) will take you 5 minutes to eat
You have to meet your english TA at Decio, 5 minutes away, at 1.20
That meeting should last 20 minutes
You have a math class in DeBartolo, 5 minutes away, at 1.55
The class begins with a 10 minute quiz
The prof does not allow later comers, but does allow early departures
You have to hand in a physics lab at Nieuwland by 3pm
The write-up is sitting in your dorm room, 15 minutes away.

What do you do?

Alternatives

Any subset of

- Lunch at Subway
- Lunch at BK
- Meet with TA
- Take the quiz
- Stay for the rest of math class
- Hand in lab

But: not every subset is feasible
There are constraints: e.g., can't eat two lunches can't eat at Subway and see TA

Some feasible alternatives

	Subway	BK	TA	Quiz	rest of class	lab
Alt 1	Y	X	X	Y	Y	X
Alt 2	Y	X	X	Y	X	Y
Alt 3	X	Y	Y	Y	Y	X
Alt 4	X	Y	Y	Y	X	Y
Alt 5	X	Y	X	Y	Y	Y

These are the "maximal" feasible alternatives; e.g.:

	Subway	BK	TA	Quiz	rest of class	lab
Alt 6	X	X	Y	Y	Y	X
Alt 7	Y	X	X	X	X	Y

Alt 3 is better than Alt 6, and Alt 2 is better than Alt 7

Which is best?

It depends ...

- If goal is to maximize number of tasks performed, then Alts $3,4,5$ are equally best
- If primary goal is to maximize physics and math grade, and secondarily to get a nice lunch, Alt 2 is best
- If points are assigned to each task, as follows:

	Subway	BK	TA	Quiz	rest of class	lab
Points	4	1	3	5	2	6

- If ...

The guts of an Operations Research (OR) problem

- A task or tasks of some kind to perform
- A large collection of alternatives
- A smaller collection of feasible alternatives, determined by
- A collection of constraints
- Some sense of an objective
- A way of measuring the feasible alternatives against the objective
- To find an optimal feasible alternative

"Solving" an OR problem

- Turn the problem into a mathematical model
- variables
- objective function
- constraints

This step may involve simplifications

- Solve the mathematical model
- feasible solution space
- optimal feasible solution

This step usually the easiest; algorithmic. It's the focus of this course

- Apply the solution

In this step, we may expose flaws of the model, and have to start the modeling process again

