Relations between Primal and Dual

If the primal problem is
Maximize $c^{t} x$ subject to $A x=b, x \geq 0$
then the dual is
Minimize $b^{t} y$ subject to $A^{t} y \geq c$ (and y unrestricted)
Easy fact:
If x is feasible for the primal, and y is feasible for the dual, then

$$
c^{t} x \leq b^{t} y
$$

So (primal optimal) \leq (dual optimal) (Weak Duality Theorem)
Much less easy fact: (Strong Duality Theorem)
If one of the primal and the dual have finite optima, they both have and

$$
(\text { primal optimal })=(\text { dual optimal })
$$

The "Inverse Matrix"

In the initial simplex tableau, there's an identity matrix. At a later simplex tableau, the "inverse matrix" is the matrix occupying the same space as that original identity matrix.

The inverse matrix conveys all information about the current state of the algorithm, as we will see.

Starting variables

Identity matrix
(Starting tableau)

Starting variables

(General iteration)

Computing dual values from Inverse Matrix

If we have reached the optimal primal tableau, these methods give the optimal dual values; at earlier iterations, they give a certain "dual" of the current basic feasible solution

Method 1:

Row vector of dual values $=$ Row vector of original objective values of current basic variables (listed in order they appear along basic column of current tableau) X current inverse

Method 2: (see textbook for this)
Write w_{i} for initial basic variable in row i.
Value of dual variable $y_{i}=$ current z-row coefficient of $w_{i}+$ original objective coefficient of w_{i}

Example - Primal problem

Minimize $4 x_{1}+2 x_{2}-x_{3}$
subject to

$$
\begin{aligned}
& x_{1}+x_{2}+2 x_{3} \geq 3 \\
& 2 x_{1}-2 x_{2}+4 x_{3} \leq 5 \\
& x_{1}, x_{2}, x_{3} \geq 0
\end{aligned}
$$

In standard form:
Minimize $4 x_{1}+2 x_{2}-x_{3}+0 s_{1}+M R+0 s_{2}$
subject to
$x_{1}+x_{2}+2 x_{3}-s_{1}+R=3$
$2 x_{1}-2 x_{2}+4 x_{3}+s_{2}=5$
$x_{1}, x_{2}, x_{3}, s_{1}, R, s_{2} \geq 0$.

Example - The dual

Maximize $3 y_{1}+5 y_{2}$
subject to

$$
\begin{aligned}
& y_{1}+2 y_{2} \leq 4 \\
& y_{1}-2 y_{2} \leq 2 \\
& 2 y_{1}+4 y_{2} \leq-1 \\
& -y_{1} \leq 0, \text { i.e. } y_{1} \geq 0 \\
& y_{1} \leq M \\
& y_{2} \leq 0
\end{aligned}
$$

Note that the addition of the artificial variable to the primal adds a new constraint to the dual: $y_{1} \leq M$. But since we imagine M to be very large, this effectively puts no new constraint on y_{1}. For convenience, we'll take $M=100$.

Example - initial tableau

	x_{1}	x_{2}	x_{3}	s_{1}	R	s_{2}	soln
z-row	96	98	201	-100	0	0	300
R	1	1	2	-1	$\mathbf{1}$	$\mathbf{0}$	3
s_{2}	2	-2	4	0	$\mathbf{0}$	$\mathbf{1}$	5

Inverse matrix is bolded
Current solution: $R=3, s_{2}=5, z=300$. Feasible, but not optimal Current "dual solution":

$$
\left(\begin{array}{ll}
y_{1} & y_{2}
\end{array}\right)=\left(\begin{array}{lll}
100 & 0
\end{array}\right)\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)=\left(\begin{array}{ll}
100 & 0
\end{array}\right)
$$

i.e. $y_{1}=100, y_{2}=0, z_{\text {dual }}=300$

We will see later that this is "optimal but not feasible".

Example - first iteration

	x_{1}	x_{2}	x_{3}	s_{1}	R	s_{2}	soln
z-row	-4.5	198.5	0	-100	0	-50.25	48.75
R	0	2	0	-1	$\mathbf{1}$	$\mathbf{- . 5}$.5
x_{3}	.5	-.5	1	0	$\mathbf{0}$	$\mathbf{. 2 5}$	1.25

Inverse matrix is bolded
Current solution: $R=.5, x_{3}=.25, z=48.75$. Feasible, but not optimal Current "dual solution":

$$
\left(\begin{array}{ll}
y_{1} & y_{2}
\end{array}\right)=(100-1)\left(\begin{array}{rr}
1 & -.5 \\
0 & .25
\end{array}\right)=\left(\begin{array}{ll}
100-50.25
\end{array}\right)
$$

i.e. $y_{1}=100, y_{2}=-50.25, z_{\text {dual }}=48.75$

Again, "optimal but not feasible".

Example - optimal tableau

	x_{1}	x_{2}	x_{3}	s_{1}	R	s_{2}	soln
z-row	-4.5	0	0	-.75	-99.25	-.625	-.875
x_{2}	0	1	0	-.5	.5	-.25	.25
x_{3}	.5	0	1	-.25	.25	$\mathbf{. 1 2 5}$	1.375

Inverse matrix is bolded
Optimal solution: $x_{2}=.25, x_{3}=1.375, z=-.875$.
Optimal dual solution:

$$
\left(y_{1} y_{2}\right)=(2-1)\left(\begin{array}{cc}
.5 & -.25 \\
.25 & .125
\end{array}\right)=(.75-.625)
$$

i.e. $y_{1}=.75, y_{2}=-.625, z_{\text {dual }}=-.875$

This is readily checked to be feasible and optimal for dual

Getting whole tableau from Inverse (and initial data)

Constraint columns:
New constraint column = current inverse X original constraint column
Objective coefficients:
Objective coefficient (z-row entry) of variable $x_{j}=$ Left hand side of j th dual constraint (evaluated at current "dual solution") - right hand side of j th dual constraint

Example - first iteration of previous problem

	x_{1}	x_{2}	x_{3}	s_{1}	R	s_{2}	soln
z-row	-4.5	$\mathbf{1 9 8 . 5}$	0	-100	0	-50.25	48.75
R	0	$\mathbf{2}$	0	-1	$\mathbf{1}$	-.5	.5
x_{3}	.5	-.5	1	0	$\mathbf{0}$	$\mathbf{. 2 5}$	1.25

We look at (bolded) x_{2} constraint column and objective entry

$$
\left(\begin{array}{cc}
1 & -.5 \\
0 & .25
\end{array}\right)\binom{1}{-2}=\binom{2}{-.5}
$$

(Inverse X original x_{2} column $=$ new x_{2} column)
Coefficient of x_{2} in z-row is computed by

$$
\left(y_{1}-2 y_{2}\right)-2=([100]-2[-50.25])-2=198.5
$$

using values of y_{1}, y_{2} computed earlier.

