Going from graphic solutions to algebraic

- 2 variables:
- Graph constraints
- Identify corner points of feasible area
- Find which corner point has best objective value
- More variables:
- Think about constraints algebraically
- Identify "extreme points" (a.k.a. basic feasible solutions)
- Find which basic feasible solution has best objective value

Matrix representation

Optimize

$$
c_{1} x_{1}+\ldots+c_{n} x_{n}
$$

subject to

$$
\begin{aligned}
a_{11} x_{1}+\ldots+a_{1 n} x_{n} & =b_{1} \\
\ldots & \ldots \\
a_{m 1} x_{1}+\ldots+a_{m n} x_{n} & =b_{m}
\end{aligned}
$$

and $x_{i} \geq 0$ for all i, may be written as
Optimize

$$
\mathbf{c}^{T} \mathbf{x}
$$

subject to

$$
A \mathbf{x}=\mathbf{b}, \mathbf{x} \geq 0
$$

for suitable vectors $\mathbf{c}, \mathbf{x}, \mathbf{b}$ and matrix A

Reducing to $m<n$

$A \mathbf{x}=\mathbf{b}$ is a system of m equations in n unknowns
Linear algebra tells us that if $m>n$ there is redundancy in the system: some of the equations can be derived from linear combinations of others. Gaussian elimination allows us to reduce to a smallest possible set of independent equations with same solution space
If $m=n$ after reduction, the system either has no solution (in which case, no feasible solution to LP), or a unique solution, which may or may not be feasible (i.e., may or may not satisfy $x \geq 0$). In either case, the methods of linear algebra solve the LP
So from now on, we assume that $m<n$, meaning we have more variables than constraints. This is what we most often encounter in linear programming, since \leq or \geq constraints in the original problem introduce new variables, but no new constraints, and the same for unrestricted variables.

Basic feasible solutions

Take any $n-m$ of the n variables and set them to zero. These variables are called the non-basic variables.

The matrix equation $A \mathbf{x}=\mathbf{b}$ reduces to a system of m equations in m unknown variables. These variables are called the basic variables.

This m by m system may have a unique solution in which all the components are non-negative. If it does, the feasible solution to the LP with the non-basic variables set to zero, and the value of the basic variables determined by the unique solution to the m by m system, is called a basic feasible solution.

Just as the optimal solution to a 2-variable LP occurs at a corner point of the feasible space, the optimal solution to an LP in standard form always occurs at a basic feasible solution.

Solving an LP in finite time

- Convert to standard form, m constraints, n variables
- Use linear algebra to make sure there is no redundancy among equations (so $m \leq n$)
- If $m=n$, solve $A \mathbf{x}=\mathbf{b}$ to perhaps get unique feasible solution
- If $m<n$:
- For each subset of $n-m$ variables, set these variables to zero, and see if there is a unique, non-negative solution to the resulting m by m system. If there is, record this as a basic feasible solution
- Evaluate the objective at all basic feasible solutions
- The optimum is the best value among basic feasible solutions

Finite ... but not necessarily quick!

How many basic feasible solutions are there? At most

$$
\binom{n}{m}=\frac{n!}{m!(n-m)!}
$$

(this is the number of ways of choosing the m potentially basic variables from the set of n variables).

How long might the procedure just described take?

- $n=10, m=5: 252$ steps
- $n=20, m=10: 184,756$ steps
- $n=30, m=15: 155,117,520$ steps
- $n=40, m=20: 137,846,528,820$ steps
- $n=50, m=25: 126,410,606,437,752$ steps

Things quickly spiral out of control!

Why are basic feasible solutions so special?

Here's a very high-level idea of what's going on:

- If we set fewer than $n-m$ components of \mathbf{x} to zero, get to solve m equations in more than m variables to determine the rest of \mathbf{x}. There are infinitely many solutions, and around any one solution there is a "ball" of other solutions. It's always possible to find a direction to move in inside this ball that improves the objective value.
Conclusion: no solution that is obtained by setting fewer than $n-m$ components to zero can be optimal
- If we set $n-m$ components of \mathbf{x} to zero, and the resulting m by m system has a solution, but not a unique one, then it has infinitely many, and we can do the same thing as in the first point to conclude that a solution so obtained isn't optimal
- Conclusion: The only solutions that might potentially be optimal are the basic feasible solutions

