Economic interpretation of dual

Consider the following primal problem:

Maximize

$$c_1x_1+\ldots+c_nx_n$$

subject to all $x_i \ge 0$

$$a_{11}x_1 + \dots a_{1n}x_n \leq b_1$$

$$a_{m1}x_1 + \dots a_{mn}x_n \leq b_m.$$

. . .

Economic interpretation:

n economic *activities*, *m* resources c_j is revenue per unit of activity *j* b_i is maximum availability of resource *i* a_{ij} is consumption of resource *i* per unit of activity *j*

The dual

Minimize

$$b_1y_1 + \ldots + b_my_m$$

subject to all $y_i \ge 0$

$$a_{11}y_1 + \dots a_{1m}y_m \ge c_1$$

 $a_{n1}x_1 + \dots a_{nm}y_m \ge c_n.$

. . .

Interpreting the dual variables

If (x_1, \ldots, x_n) is optimal for the primal, and (y_1, \ldots, y_m) is optimal for the dual, then we know:

$$c_1x_1 + \ldots + c_nx_n = b_1y_1 + \ldots + b_my_m$$

Left-hand side: Maximal revenue Right-hand side:

 \sum resources *i* (availability of resource *i*) × (revenue per unit of resource *i*) In other words: Value of y_i at optimal is *dual price of resource i*

Away from optimality, we have

 $c_1 x_1 + \ldots + c_n x_n < b_1 y_1 + \ldots + b_m y_m$

Left-hand side: current (suboptimal) revenue Right-hand side: $\sum_{\text{resources } i}$ (worth of resource i)

Solution is not optimal because resources are not being fully utilized

Interpreting the dual constraints

If (x_1, \ldots, x_n) is feasible (not necessarily optimal) for the primal, and (y_1, \ldots, y_m) is the corresponding collection of dual values, then we know:

Current objective coefficient of x_j

= (Left-hand side of dual constraint j) – (Right-hand side)

 $= (a_{1j}y_1 + \ldots + a_{mj}y_j) - c_j$

 c_j is a measure of revenue per unit (of activity j) So $a_{1j}y_1 + \ldots + a_{mj}y_j$ is an *imputed* (implicit) *cost per unit* (of act. j) Also, y_i is *imputed cost* per unit of resource i in a unit of activity jIf objective coefficient of x_j (= cost - revenue, = *reduced cost*) is **strictly negative**, then revenue > cost, so it makes since to increase activity j — this is the pivoting process of the simplex method