Meatloaf problem

A butcher has pork and beef available to him to make meatloafs. Each meatloaf should weight at least 1 kilo. The customers demand that the fat content of a meatloaf should be no more than 25%. The beef that the butcher works with contains 20% fat, and the pork contains 32% fat. If the beef costs 80 cents per kilo and the pork costs 60 cents, how should the butcher mix beef and pork in the meatloaf in order to minimize his cost?

A equivalent linear programming problem?

Let x be kilos of beef used in each meatloaf, and y be kilos of pork used. Since the butcher is trying to minimize his cost, it's reasonable (?) to assume that he should make meatloafs that are exactly 1 kilo, so that we should have $x+y=1$.

Minimize

$$
80 x+60 y
$$

subject to

$$
\begin{aligned}
x+y & =1 \\
.2 x+.32 y & \leq .25 \\
x, y & \geq 0 .
\end{aligned}
$$

A more correct formulation

Let x be kilos of beef used in each meatloaf, and y be kilos of pork used.
Minimize

$$
80 x+60 y
$$

subject to

$$
\begin{aligned}
x+y & \geq 1 \\
.2 x+.32 y & \leq .25(x+y) \\
\text { (i.e., }-.05 x+.07 y & \leq 0) \\
x, y & \geq 0 .
\end{aligned}
$$

Why? An additional constraint may eliminate all feasible solutions with $x+y=1$. E.g., the butcher, knowing his daily demand and the expiry date of some of his pork, may determine that he must use a minimum . 6 kilos of pork per meatloaf. Note that .4 kilo beef and .6 kilo pork already has 272 grams of fat, so need to go above 1 kilo to get below 25% fat.

Solution to first formulation (via TORA)

Figure 1: Optimum: . 58 kilos beef, .42 kilos pork, cost 71.67 cents

Solution to second formulation (via TORA)

Figure 2: Optimum: . 58 kilos beef, .42 kilos pork, cost 71.67 cents

