The diet problem — sensitivity analysis

Two available brands of cereal:

Krunchies, costing 3.8 cents per ounce

Crispies, costing 6.2 cents per ounce

Breakfast nutrition requirements:

Thiamine: at least 1 mg

Niacin: at least 5 mg

Energy: at least 900 calories, at most 1500

Nutritional info for Krunchies and Crispies (per ounce):

	Thiamine	Niacin	Energy		
Krunchies:	.1	1	110		
Crispies:	.25	.25	120		

The problem:

Produce a low-cost breakfast that satisfies nutritional requirements

The Linear Programming formulation

K = number of ounces of Krunchies C = number of ounces of Crispies

Minimize	3.8K + 6.2C	(total cost)
Subject to	$.1K + .25C \ge 1$	(thiamine need)
	$K + .25C \ge 5$	(niacin need)
	$110K + 120C \ge 900$	(energy need)
	$110K + 120C \le 1500$	(energy restriction)
	$K \ge 0, \ C \ge 0$	

Solution via TORA

K = 6.77, C = 1.29; cost 33.74 cents

Initial and final tableaus (M = 50)

Iteration 1	K	С								
Basic	x1	ж2	Sx3	Sx4	Sx5	Rx6	Bx7	Rx8	sx9	Solution
z (min)	5551.2000	6018.8000	-50.0000	-50.0000	-50.0000	0.0000	0.0000	0.0000	0.0000	45300.0000
Rx6	0.1000	0.2500	-1.0000	0.0000	0.0000	1.0000	0.0000	0.0000	0.0000	1.0000
Bx7	1.0000	0.2500	0.0000	-1.0000	0.0000	0.0000	1.0000	0.0000	0.0000	5.0000
Rx8	110.0000	120.0000	0.0000	0.0000	-1.0000	0.0000	0.0000	1.0000	0.0000	900.0000
sx9	110.0000	120.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	1.0000	1500.0000
Iteration 5	K	C								
Basic	×1	ж2	Sx3	Sx4	Sx5	Rx6	Bx7	Rx8	sx9	Solution
z (min)	0.0000	0.0000	-14.5806	0.0000	-0.0213	-35.4194	-50.0000	-49.9787	0.0000	33.7419
х2	0.0000	1.0000	-7.0968	0.0000	0.0065	7.0968	0.0000	-0.0065	0.0000	1.2903
x1	1.0000	0.0000	7.7419	0.0000	-0.0161	-7.7419	0.0000	0.0161	0.0000	6.7742
Sx4	0.0000	0.0000	5.9677	1.0000	-0.0145	-5.9677	-1.0000	0.0145	0.000	2.0968
Q	0.0000	0.0000	0.0000	0.0000	1 0000	0.0000	0.0000	1 0000	1 0000	000 0000

Dual price for Thiamine constraint: 14.58

Dual price for Niacin constraint: 0 (optimum provides 5 + 2.1 mgs of

Niacin; changing Niacin demand slightly won't move optimum) Dual price for minimum calorie constraint: 0.021

Dual price for maximum calorie constraint: 0 (as with the Niacin

constraint, the max. calorie constraint is not met tightly)

Feasible ranges for changes to right-hand side

If: Thiamine demand changes from 1 to $1 + \Delta_1$ Niacin demand changes from 5 to $5 + \Delta_2$ Minimum calorie requirement changes from 900 to $900 + \Delta_3$ Maximum calorie requirement changes from 1500 to $1500 + \Delta_4$

then: Minimum cost changes to $33.74 + 14.58\Delta_1 + .021\Delta_3$ Optimum value for K changes to $6.77 - 7.74\Delta_1 + .016\Delta_3$ Optimum value for C changes to $1.29 + 7.1\Delta_1 - .0065\Delta_3$

as long as:
$$1.29 + 7.1\Delta_1 - .0065\Delta_3 \ge 0$$

 $6.77 - 7.74\Delta_1 + .016\Delta_3 \ge 0$
 $2.1 - 5.97\Delta_1 - \Delta_2 + .015\Delta_3 \ge 0$
 $600 - \Delta_3 + \Delta_4 \ge 0$

or individually: $-.18 \le \Delta_1 \le .35$ $-\infty \le \Delta_2 \le 2.1$ $-140 \le \Delta_3 \le 198$ $-600 \le \Delta_4 \le \infty$

Example

If: Thiamine demand remains at 1
Niacin demand changes from 5 to 4
Minimum calorie requirement changes from 900 to 800
Maximum calorie requirement changes from 1500 to 1000

then: $\Delta_1 = 0$, $\Delta_2 = -1$, $\Delta_3 = -100$, $\Delta_4 = -500$

and: Cost changes to 33.74 + 14.58 * 0 - .021 * 100 = 31.64K changes to 6.77 - 7.74 * 0 - .016 * 100 = 5.17C changes to 1.29 + 7.1 * 0 + .0065 * 100 = 1.94

because: $1.29 + 7.1 * 0 + .0065 * 100 \ge 0$ $6.77 - 7.74 * 0 - .016 * 100 \ge 0$ $2.1 - 5.97 * 0 + 1 - .015 * 100 \ge 0$ $600 + 100 - 500 \ge 0$