The diet problem - sensitivity analysis

Two available brands of cereal:
Krunchies, costing 3.8 cents per ounce
Crispies, costing 6.2 cents per ounce
Breakfast nutrition requirements:
Thiamine: at least 1 mg
Niacin: at least 5 mg
Energy: at least 900 calories, at most 1500
Nutritional info for Krunchies and Crispies (per ounce):

	Thiamine	Niacin	Energy
Krunchies:	.1	1	110
Crispies:	.25	.25	120

The problem:
Produce a low-cost breakfast that satisfies nutritional requirements

The Linear Programming formulation

$K=$ number of ounces of Krunchies
$C=$ number of ounces of Crispies
Minimize
Subject to

$$
\begin{array}{cr}
3.8 K+6.2 C & \text { (total cost) } \\
.1 K+.25 C \geq 1 & \text { (thiamine need) } \\
K+.25 C \geq 5 & \text { (niacin need) } \\
110 K+120 C \geq 900 & \text { (energy need) } \\
110 K+120 C \leq 1500 & \text { (energy restriction) } \\
K \geq 0, C \geq 0 &
\end{array}
$$

Solution via TORA

$$
K=6.77, C=1.29 ; \text { cost } 33.74 \text { cents }
$$

Initial and final tableaus ($M=50$)

Iteration 1	K	C								
Basic	$\times 1$	x2	Sx3	Sx4	Sx5	Rx6	Rx7	Rx8	sx9	Solution
z (min)	5551.2000	6018.8000	-50.0000	-50.0000	-50.0000	0.0000	0.0000	0.0000	0.0000	45300.0000
Rx6	0.1000	0.2500	-1.0000	0.0000	0.0000	1.0000	0.0000	0.0000	0.0000	1.0000
Rx7	1.0000	0.2500	0.0000	-1.0000	0.0000	0.0000	1.0000	0.0000	0.0000	5.0000
Rx8	110.0000	120.0000	0.0000	0.0000	-1.0000	0.0000	0.0000	1.0000	0.0000	900.0000
sx9	110.0000	120.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	1.0000	1500.0000
Iteration 5	K	C								
Basic	$\times 1$	x2	Sx3	Sx4	Sx5	Rx6	Rx7	Rx8	sx9	Solution
z (min)	0.0000	0.0000	-14.5806	0.0000	-0.0213	-35.4194	-50.0000	-49.9787	0.0000	33.7419
$\times 2$	0.0000	1.0000	-7.0968	0.0000	0.0065	7.0968	0.0000	-0.0065	0.0000	1.2903
$\times 1$	1.0000	0.0000	7.7419	0.0000	-0.0161	-7.7419	0.0000	0.0161	0.0000	6.7742
5×4	0.0000	0.0000	5.9677	1.0000	-0.0145	-5.9677	-1.0000	0.0145	0.0000	2.0968
sx9	0.0000	0.0000	0.0000	0.0000	1.0000	0.0000	0.0000	-1.0000	1.0000	600.0000

Dual price for Thiamine constraint: 14.58
Dual price for Niacin constraint: 0 (optimum provides $5+2.1 \mathrm{mgs}$ of Niacin; changing Niacin demand slightly won't move optimum)
Dual price for minimum calorie constraint: 0.021
Dual price for maximum calorie constraint: 0 (as with the Niacin constraint, the max. calorie constraint is not met tightly)

Feasible ranges for changes to right-hand side

If: Thiamine demand changes from 1 to $1+\Delta_{1}$
Niacin demand changes from 5 to $5+\Delta_{2}$
Minimum calorie requirement changes from 900 to $900+\Delta_{3}$
Maximum calorie requirement changes from 1500 to $1500+\Delta_{4}$
then: Minimum cost changes to $33.74+14.58 \Delta_{1}+.021 \Delta_{3}$
Optimum value for K changes to $6.77-7.74 \Delta_{1}+.016 \Delta_{3}$
Optimum value for C changes to $1.29+7.1 \Delta_{1}-.0065 \Delta_{3}$
as long as: $1.29+7.1 \Delta_{1}-.0065 \Delta_{3} \geq 0$
$6.77-7.74 \Delta_{1}+.016 \Delta_{3} \geq 0$
$2.1-5.97 \Delta_{1}-\Delta_{2}+.015 \Delta_{3} \geq 0$
$600-\Delta_{3}+\Delta_{4} \geq 0$
or individually: $\quad-.18 \leq \Delta_{1} \leq .35$
$-\infty \leq \Delta_{2} \leq 2.1$
$-140 \leq \Delta_{3} \leq 198$
$-600 \leq \Delta_{4} \leq \infty$

Example

If: Thiamine demand remains at 1
Niacin demand changes from 5 to 4
Minimum calorie requirement changes from 900 to 800
Maximum calorie requirement changes from 1500 to 1000
then: $\Delta_{1}=0, \quad \Delta_{2}=-1, \quad \Delta_{3}=-100, \quad \Delta_{4}=-500$
and: Cost changes to $33.74+14.58 * 0-.021 * 100=31.64$
K changes to $6.77-7.74 * 0-.016 * 100=5.17$
C changes to $1.29+7.1 * 0+.0065 * 100=1.94$
because: $1.29+7.1 * 0+.0065 * 100 \geq 0$

$$
\begin{aligned}
& 6.77-7.74 * 0-.016 * 100 \geq 0 \\
& 2.1-5.97 * 0+1-.015 * 100 \geq 0 \\
& 600+100-500 \geq 0
\end{aligned}
$$

