Simplex method — summary

Problem: optimize a linear objective, subject to linear constraints

- 1. Step 1: Convert to standard form:
 - variables on right-hand side, positive constant on left
 - slack variables for \leq constraints
 - surplus variables for \geq constraints
 - $x = x^{-} x^{+}$ with $x^{-}, x^{+} \ge 0$ if x unrestricted
 - in standard form, all variables ≥ 0 , all constraints equalities
- 2. Step 2: Add artificial variables:
 - one for each constraint without a slack variable
- 3. Step 3: Create an objective constraint:
 - add new variable z, and add new constraint z- objective = 0
- 4. **Step 4**: Form the initial tableau:
 - first column to identify basic variables
 - last column for constants on right-hand sides of constraints
 - in between, one column for each variable (beginning with z)
 - first row for labels
 - remaining rows for constraints (beginning with objective but see Step 5 below)
- 5. Step 5: Identify the initial objective function (z = ?)
 - if all constraints were ≤, so slack variable in each constraint, use objective function from original problem
 - if there are artificial variables, and *M*-method is being used, objective function is original objective plus
 - large positive multiple of each artificial variable (if minimization problem)
 - large negative multiple of each artificial variable (if maximization problem)
 - if there are artificial variables, and two-phase method is being used, objective function is sum of artificial variables, and this should be minimized (whether or not original problem was minimization)

- 6. **Step 6**: Identify initial basic variables:
 - slack variables together with artificial variables
 - looking at constraint rows only in columns of these initial basic variables, should see permutation of columns of identity matrix
 - label each constraint row by the basic variable occurring once in that row
- 7. Step 7: Modify the *z*-row
 - if entry in *z*-row in column of basic variable is not zero, add appropriate multiple of the row in which that basic variable appears, so that entry becomes 0
 - at end of process, objective is expressed entirely in terms of non-basic variables
 - if initial basic variables consist of all slack variables, this step not necessary
- 8. Step 8: Identify an entering basic variable and pivot column:
 - maximization problem most negative coefficient in *z*-row
 - minimization problem most positive coefficient in z-row
 - break ties by choosing left-most column
 - column of entering variable is pivot column
 - if no entering variable, STOP optimum reached
 - current basic feasible solution is optimal
 - optimal objective value is last entry (solution column) of objective row
- 9. Step 9: Identify a departing basic variable and pivot row:
 - for each non-basic variable, take ratio of entry in solution column and entry in pivot column
 - non-basic variable with smallest non-negative ratio is departing variable, and corresponding row is pivot row
 - break ties by choosing top-most column
- 10. Step 10: Pivot on pivot entry:
 - pivot entry is intersection of pivot row and pivot column
 - scale pivot row so pivot element is one
 - add multiples of pivot row to other rows (including objective row) so rest of pivot column is zero
 - change label of pivot row to that of entering variable

- 11. Step 11: Iterate:
 - repeat steps 8 through 10 until optimal is reached
 - if using *M*-method or all-slack starting solution, problem is completely done; if using two-phase method, go onto step 12
- 12. Step 12: Phase 2 of two-phase method:
 - as long as phase 1 of two-phase method returns minimum of zero, continue to phase 2
 - create a new initial tableau
 - objective row given by original objective of problem
 - constraint rows given by constraint rows of final tableau of phase 1, with artificial columns removed
 - initial basic variables given by basic variables at end of phase 1
 - go back to step 7

Four quirky situations

1. Degeneracy:

- Geometric idea
 - can happen when more constraints meet at a point then would be normal (three or more two variable constraints, four or more three variable constraints, etc.)
 - typically one of these constraints is redundant (its removal doesn't change the feasible space)
 - at the degenerate point, one (or more) of the basic variables is zero, so in fact the same point corresponds to numerous basic feasible solutions
- Simplex manifestation
 - occurs whenever there is a tie for departing variable
 - at next iteration, entering variable will be constrained to enter at value zero
 - simplex algorithm will move to a new basic feasible solution, but it's geometrically the same point, and the objective doesn't change
- Implications
 - typically, slows down simplex algorithm
 - in worst case, can lead to cycling algorithm loops, staying at the same (suboptimal) point forever
 - this is so wildly unlikely (and difficult to deal with) that no commercial implementation of simplex algorithm bothers to deal with it

2. Alternative optima:

- Geometric idea
 - happens when one of the constraints which is satisfied tightly at the optimum is parallel to the objective
 - there is more than one optimal basic feasible solution, and infinitely many optimum solutions that are not basic
- Simplex manifestation
 - when optimality is reached, one (or more) of the non-basic variables has coefficient zero in objective
 - each one can enter into the set of basic variables, without changing the objective value
- Implications
 - gives a variety of choices for optimum, some of which may be more desirable than others
 - doesn't affect the running of the algorithm

3. Unbounded solution:

- Geometric idea
 - happens when the constraints do not trap a finite region in space, but allow at least one variable to go to infinity inside feasible region
 - the objective value can be made as large (or small, if a minimization problem) as one wishes
- Simplex manifestation
 - when ratio test is being used to determine constraints on entering variable, all ratios are either negative or infinity
 - the current entering variable is the one that can be made as large as desired
- Implications
 - suggests that the original problem may have been poorly posed, or fed into solver incorrectly
 - simplex algorithm should be coded to stop when finding an unbounded variable

4. Unfeasible problem:

- Geometric idea
 - happens when the constraints are inconsistent
 - there is no feasible point that satisfies all the constraints
 - cannot occur when all constraints are \leq , because all-zero solution (all-slack solution) is feasible in this case
- Simplex manifestation
 - occurs only when M-method or two-phase method are being used
 - * M-method: no matter how large M is, one of the artificial variables is always basic in optimum solution
 - * two-phase method: phase 1 ends by discovering that minimum of sum of artificial variables is positive
- Implications
 - suggests that the original problem may have been poorly posed, or fed into solver incorrectly