The combinatorial expression \(\binom{n}{r} \) is defined by
\[
\binom{n}{r} = \frac{n!}{r!(n-r)!},
\]
but it also has a combinatorial interpretation, namely
\[
\binom{n}{r} \text{ counts the number of subsets of size } r \text{ of a set of size } n.
\]

As a result, there are often two ways to verify an equality involving \(\binom{n}{r} \): a direct verification, using the definition, and what is called a combinatorial argument, which is an argument that shows that both sides of the equality can be interpreted as counting the same thing.

Here’s an example. Consider the equality
\[
r \binom{n}{r} = n \binom{n-1}{r-1}.
\]
This can be verified directly from the definition:
\[
r \binom{n}{r} = r \frac{n!}{r!(n-r)!} = \frac{n!}{(r-1)!(n-r)!} = n \frac{(n-1)!}{(r-1)!(n-r)!} = n \binom{n-1}{r-1}.
\]
But there is also a combinatorial argument that proves the identity. Imagine having to choose a committee of size \(r \) from a group \(n \) people, with the additional rule that one of the \(r \) people on the committee must be selected as committee chair. How many ways are there to select the committee-with-chair? One way to answer this question is to say that there are \(\binom{n}{r} \) ways to choose the committee, and then, once it has been chosen, there are \(r \) ways to choose the chair. By the basic principle of counting, this means that
\[
\text{Number of possible committees-with-chair} = r \binom{n}{r}.
\]
But here’s another way to answer the question. There has to be a chair, so we first choose who that is to be (n choices). The remaining $r - 1$ members of the committee now have to be chosen from among the remaining $n - 1$ people in the group ($\binom{n-1}{r-1}$ choices). It follows that

$$ \text{Number of possible committees-with-chair} = n \binom{n-1}{r-1}. $$

Since both $r \binom{n}{r}$ and $n \binom{n-1}{r-1}$ count the same thing, they must be equal.

The second parts of Ross, Chapter 3, Problems 16 and 17, should be answered in a similar way to the argument above.