Introduction to Probability and Statistics

Combinatorial arguments

January 22, 2008

The combinatorial expression $\binom{n}{r}$ is defined by

$$
\binom{n}{r}=\frac{n!}{r!(n-r)!},
$$

but it also has a combinatorial interpretation, namely

$$
\binom{n}{r} \text { counts the number of subsets of size } r \text { of a set of size } n \text {. }
$$

As a result, there are often two ways to verify an equality involving $\binom{n}{r}$: a direct verification, using the definition, and what is called a combinatorial argument, which is an argument that shows that both sides of the equality can be interpreted as counting the same thing.

Here's an example. Consider the equality

$$
r\binom{n}{r}=n\binom{n-1}{r-1}
$$

This can be verified directly from the definition:

$$
r\binom{n}{r}=r \frac{n!}{r!(n-r)!}=\frac{n!}{(r-1)!(n-r)!}=n \frac{(n-1)!}{(r-1)!(n-r)!}=n\binom{n-1}{r-1}
$$

But there is also a combinatorial argument that proves the identity. Imagine having to choose a committee of size r from a group n people, with the additional rule that one of the r people on the committee must be selected as committee chair. How many ways are there to select the committee-with-chair? One way to answer this question is to say that there are $\binom{n}{r}$ ways to choose the committee, and then, once it has been chosen, there are r ways to choose the chair. By the basic principle of counting, this means that

$$
\text { Number of possible committees-with-chair }=r\binom{n}{r} .
$$

But here's another way to answer the question. There has to be a chair, so we first choose who that is to be (n choices). The remaining $r-1$ members of the committee now have to be chosen from among the remaining $n-1$ people in the group $\left(\binom{n-1}{r-1}\right.$ choices). It follows that

$$
\text { Number of possible committees-with-chair }=n\binom{n-1}{r-1} .
$$

Since both $r\binom{n}{r}$ and $n\binom{n-1}{r-1}$ count the same thing, they must be equal.
The second parts of Ross, Chapter 3, Problems 16 and 17, should be answered in a similar way to the argument above.

