Math 30440: Probability and Statistics Spring Semester 2009
 Exam 1 - Full solutions

1. A full house in Poker is a set of five cards made up of a three of a kind and a pair (e.g., $5 \circlearrowleft, 5 \boldsymbol{\natural}, 5 \diamond, 7 \boldsymbol{\oplus}, 7 \diamond)$.
2. How many different full houses are there? (Ignoring the order of the cards in the hand).

Solution: 13 ways to choose face value of set of $3,\binom{4}{3}$ ways to choose actual three cards, 12 ways to choose face value of pair, $\binom{4}{2}$ ways to choosectual pair. So $13 *\binom{4}{3} * 12 *\binom{4}{2}=3744$ in all.
2. I play the following game with you: you pay me a dollar. I then deal you 5 cards from a regular deck (with all possible hands of 5 cards equally likely). If your 5 cards form a full house, then I give you $\$ 1000$; otherwise I give you nothing. If X is the amount that you win playing this game, calculate $E(X)$. (Clarification: If you win, $X=999$ ($\$ 1000$ minus your $\$ 1$ entry fee); if you lose, $X=-1$)
Solution: $P($ full house $)=3744 /\binom{52}{5}=.00144 \ldots$. So

$$
X= \begin{cases}1000-1=999 & \text { with probability } .00144 \ldots \\ -1 & \text { with probability } .99855 \ldots\end{cases}
$$

$E(X)=999 * .00144 \ldots-1 * .99855 \ldots=.44 \ldots$
3. Would you be willing to play this game with me 200 times? Explain why or why not.

Solution: This is a matter of opinion. On the one hand, yes, because I expect to win 44 cents on average each time I play; so over 200 plays, I expect to win $\$ 88$. But: if I only play 200 times, what is the probability that I lose all 200 times? It's $(.99855)^{200}=.748 \ldots$. So although my expected winning over 200 tries is $\$ 88,75 \%$ of the time in which I play 200 times, I will lose $\$ 200$. This seems like a risky proposition. (If 200 was replaced by 200,000 , I would definitely play).
2. Three companies produce Digital Converter Boxes.

- Company A has market share 60% and 8% of its products are defective
- Company B has market share 30% and 6% of its products are defective
- Company C has market share 10% and 10% of its products are defective

1. I buy a Digital Converter Box. What's the probability that it is defective?

Solution:
$P(D)=P(D \mid A) P(A)+P(D \mid B) P(B)+P(D \mid C) P(C)=.08 * .6+.06 * .3+.1 * .1=.076$.
2. Given that it is defective, how likely was it to have been produced by Company C ?

Solution:

$$
P(C \mid D)=\frac{P(C D)}{P(D)}=\frac{P(D \mid C) P(C)}{P(D)}=\frac{.01}{.076}=.13 \ldots
$$

3. Decide whether each of the following statements is true or false, and give a short explanation of why:
1.__If events E and G are independent, then knowing $P(E)$ and $P(G)$ allows one to compute $P(E \cup G)$.
Solution: Yes, because if E and G are independent, $P(E G)=P(E) P(G)$ and so $P(E \cup$ $G)=P(E)+P(G)-P(E G)=P(E)+P(G)-P(E) P(G)$.
4. \qquad Mutually exclusive events are always independent.
Solution: No, not always (in fact almost never), because if A and B are mutually exclusive then $P(A B)=0$. This will only equal $P(A) P(B)$ if at least one of $P(A), P(B)$ is zero; so this is the only circumstance under which A and B are independent.
3.__ A function $f(x)=\left\{\begin{array}{cl}c\left(1-x^{2}\right) & \text { if }|x| \leq 2 \\ 0 & \text { otherwise }\end{array}\right.$ could be a valid probability density function, with an appropriate choice of c.
Solution: No. $1-x^{2}$ is negative for values of x close to 2 and -2 , and positive for values of x close to 0 . So no matter whether c is positive or negative, the "density function" would have negative values, which is not allowed. The only other option is $c=0$, but then $\int_{-\infty}^{\infty} f(x) d x=0$ instead of 1.
5.

___ If random variables X and Y are independent, then $E(X Y)=E(X) E(Y)$.
Solution: Yes. If they are continuous, then $f(x, y)=f_{X}(x) f_{Y}(y)$ and so

$$
E(X Y)=\iint x y f(x, y) d A=\int x f_{X}(x) d x \int y f_{X}(y) d y=E(X) E(Y)
$$

It's similar if they are discrete.
4. A machine has three components: A, B and C. For the machine to work,

- EITHER both A and B have to work
- OR C has to work.
(Clarification: "or" is meant here in the usual sense; the machine will work if A, B and C all work.) The probabilities of A, B and C working are $0.8,0.8$ and 0.6 , respectively. Assume that components work or fail independently of each other.

1. What is the probability that the machine is working?

Solution: Good configurations:
A, B work, C doesn't Probability. $8 * .8 * .4=.256$
A, B, C work Probability. $8 * .8 * .6=.384$
A, C work, B doesn't Probability. $8 * .6 * .2=.096$
B, C work, C doesn't Probability. $8 * .6 * .2=.096$
C works, A, B don't Probability. $6 * .2 * .2=.024$
Total probability of working: $.256+.384+.096+.096+.024=.856$
2. Given that the machine is currently working, what is the probability that component A is working?
Solution: $P($ Working AND A working $)=.256+.384+.096=.736$, so

$$
P(\text { A working } \mid \text { working })=\frac{.736}{.856}=.8598 \ldots
$$

5. The probability density function of the random variable X is

$$
f_{X}(x)=\left\{\begin{array}{cc}
(1-|x|) & |x| \leq 1 \\
0 & \text { elsewhere }
\end{array}\right.
$$

1. Find the cumulative distribution function of X.

Solution: X can never take values below -1 , so $F_{X}(a)=0$ for $a<-1$. It always takes values below 1 , so $F_{X}(a)=1$ for $a>1$. For $-1 \leq a \leq 1$,

$$
F_{X}(a)=\int_{-\infty}^{a} f_{X}(x) d x=\int_{-1}^{a}(1-|x|) d x
$$

If $a \leq 0$, the function we are integrating is $1+x$, which has antiderivative $x+\frac{x^{2}}{2}$ and so the value of the integral is $a+\frac{a^{2}}{2}-\left(-1+\frac{(-1)^{2}}{2}\right)=\frac{a^{2}}{2}+a+\frac{1}{2}$. If $a \geq 0$, then the integral is

$$
\int_{-1}^{0}(1+x) d x+\int_{0}^{a}(1-x) d x=\frac{1}{2}+\left[x-\frac{x^{2}}{2}\right]_{0}^{a}=\frac{1}{2}+a-\frac{a^{2}}{2} .
$$

So in summary

$$
F_{X}(x)= \begin{cases}0 & \text { if } x<-1 \\ \frac{x^{2}}{2}+x+\frac{1}{2} & \text { if }-1 \leq x \leq 0 \\ \frac{1}{2}+x-\frac{x^{2}}{2} & \text { if } 0 \leq x \leq 1 \\ 1 & \text { if } x>1\end{cases}
$$

2. Calculate the probability that $|X|>\frac{1}{2}$.

Solution: $P(|X|>1 / 2)=P(X>1 / 2)+P(X<-1 / 2)=\left(1-F_{X}(1 / 2)\right)+F_{X}(-1 / 2)=$ $(1-7 / 8)+1 / 8=1 / 4$.
6. A joint probability density function of random variables X and Y is given by the formula

$$
f(x, y)=\left\{\begin{array}{cr}
24 x y & \text { if } x \geq 0, y \geq 0 \text { and } x+y \leq 1 \\
0 & \text { otherwise }
\end{array}\right.
$$

1. Find the cumulative distribution function $F_{X}(x)$ for the random variable X.

Solution: $F_{X}(a)$ is 0 for $a<0$ and 1 for $a>1$. For $0 \leq a \leq 1$,

$$
\begin{aligned}
F_{X}(a) & =\int_{-\infty}^{a} \int_{-\infty}^{\infty} f(x, y) d y d x \\
& =\int_{0}^{a} \int_{0}^{1-x} 24 x y d y d x \\
& =\int_{0}^{a}\left[12 x y^{2}\right]_{0}^{1-x} d x \\
& =\int_{0}^{a}\left(12 x-24 x^{2}+12 x^{3}\right) d x \\
& =\left[6 x^{2}-8 x^{3}+3 x^{4}\right]_{0}^{a} \\
& =6 a^{2}-8 a^{3}+3 a^{4}
\end{aligned}
$$

2. Find $P(X \leq Y)$

Solution:

$$
P(X \leq Y)=\int_{0}^{1 / 2} \int_{x}^{1-x} 24 x y d y d x=1 / 2
$$

3. Are X and Y independent?

Solution: No. E.g., the information that X takes values close to 1 gives the information that Y takes values close to 0 .

