# Math 30530 - Introduction to Probability 

Puzzler 1

Solutions

## The puzzle:

I have two coins in my pocket. One is fair: it comes up heads half the time. The other is biased in favour of heads: it comes up heads with probability .7 each time I toss it. I can't tell the two coins apart.

I pick one coin from my pocket. Clearly the probability that it is the fair coin is .5. But then, I toss it four times in a row, and each time I get a head. Clearly this should change my assessment of the probability that I am holding the fair coin - it should make that probability somewhat less than .5. But how much less?

So here's the puzzle: what's the probability that I picked the fair coin, given that when I tossed it four times in a row, it came up heads each time?

## Solution:

Consider the experiment of picking a coin out of my pocket, recording whether it is fair or biased, then tossing it four times in a row, and recording the outcome of each toss.

Let $F$ be the event that I picked the fair coin, $B$ be the event that I picked the biased coin, and $4 H$ the event that I saw 4 heads in a row. By Bayes' formula,
$\operatorname{Pr}(F \mid 4 H)=\frac{\operatorname{Pr}(F \cap 4 H)}{\operatorname{Pr}(4 H)}=\frac{\operatorname{Pr}(4 H \mid F) \operatorname{Pr}(F)}{\operatorname{Pr}(4 H \mid F) \operatorname{Pr}(F)+\operatorname{Pr}(4 H \mid B) \operatorname{Pr}(B)}=\frac{(.5)^{4} \times .5}{(.5)^{4} \times .5+(.7)^{4} \times .5} \approx .2065$.

## More of the puzzle:

And what's the answer when I replace "four" with " $n$ ", for an arbitrary whole number $n$ ?

## Solution:

Change the experiment by observing $n$ tosses in a row, rather than just 4, and let $n H$ be the event that I saw $n$ heads in a row. Bayes' formula now gives

$$
\operatorname{Pr}(F \mid n H)=\frac{\operatorname{Pr}(n H \mid F) \operatorname{Pr}(F)}{\operatorname{Pr}(n H \mid F) \operatorname{Pr}(F)+\operatorname{Pr}(n H \mid B) \operatorname{Pr}(B)}=\frac{(.5)^{n}}{(.5)^{n}+(.7)^{n}}
$$

Notice that the .5's for $\operatorname{Pr}(F), \operatorname{Pr}(B)$ cancel. Notice also that

$$
\operatorname{Pr}(F \mid 0 H)=.5 \quad \text { and } \quad \lim _{n \rightarrow \infty} \operatorname{Pr}(F \mid n H)=0
$$

both are exactly what we should expect.

## Correct solvers：

－Kevin Katalinic（ $A \bigcirc, 2 \bigcirc$ ）
－Connor Voglewede $(3 \bigcirc, 4 \bigcirc)$
－John Macke $(5 \cup, 6 \Upsilon)$
－Roisin McCord（ $7 \circlearrowleft, 8 \circlearrowleft$ ，winner！）
－Yutong Zhang（partial）（9®）
－Liz Quinn $(10 \bigcirc, J \bigcirc)$
－Grace Smith $(Q \backsim, K \bigcirc)$
－Hannah Pawelczyk（ $A \boldsymbol{\uparrow}, 2 \boldsymbol{\uparrow}$ ）
－Melissa Flynn（partial）（3巾）
－Michael Fronk（ $4 \boldsymbol{\downarrow}, 5 \boldsymbol{\downarrow}$ ）

- Michael MacGillivray（6円，7巾）
- Sara Mykrantz（8円，9円）
- Eric Krakowiak（10円，J＠）
－John Brahier（ $Q \boldsymbol{\downarrow}, K \boldsymbol{\oplus}$ ）
－Matt Cole $(A \diamond, 1 \diamond)$

