# Math 30530 - Introduction to Probability 

Puzzler 3

Solutions

## The puzzle:

Roll six dice, and count the number of different numbers that are face-up; let $X$ be this number. The possible values for $X$ are 1 through 6 . The puzzle was to determine whaich is the most likely value that $X$ takes on, and whether you would be happy betting on that number coming up; i.e., whether that most common number comes up more than half the time.

## Solution:

Considering the six dice as distinct, there are $6^{6}=46,656$ possible outcomes of rolling the dice. We'll count in how many ways we get four different numbers.

There are $\binom{6}{4}=15$ different choices of four numbers to come up; say $1,2,3$ and 4 .
One way to get $1,2,3,4$ is to get three of one number and one of each of the others. For example, we could three 1 's, one 2 , one 3 and one 4 . There are $\binom{6}{3}$ ways of choosing the three dice that show 1 , and then 3 ! ways of deciding which of the remaining three dice show 2,3 and 4 . That's 120 ways; but since we could also have had three 2's, three 3's or three 4's, thats 480 ways.

Another way to get $1,2,3,4$ is to get two of one number, two of another, and one of each of the other two. There are $\binom{4}{2}$ ways of choosing which are the two repeated numbers; say for example we have two 1's, two 2's, one 3 and one 4 . There are $\binom{6}{2}$ ways of choosing which dice show 1 's; subsequently $\binom{4}{2}$ ways of choosing which dice show 2 's; and subsequently 2 ways of settling the last two numbers. That's $\binom{4}{2}\binom{6}{2}\binom{4}{2} 2=1080$ ways in all of having a $2-2-1-1$ split.

That gives $1080+480=1560$ ways of getting $1,2,3,4$; so $1560 \times 15=23,400$ ways of getting four different numbers.

Since 23, 400 is (just) more that half of 46,656 , this is the most likely number of different numbers. And since the probability of getting four different numbers is (barely) more than .5 , the bet is in your favor.

## Fully correct solvers:

- Michael MacGillivray $(1,4)$
- Roisin McCord (2,5 - winner!)
- John Macke $(3,6)$

