1. I’m taking part in the All-Ireland hay-tossing championship next week (hay-tossing is a real
sport in Ireland & Scotland — see e.g. http://scottishheavyathletics.com/sheaf.html).
The height I can throw a bale of hay (in yards) is a random variable with density function

\[f(x) = \begin{cases} \frac{c}{x^4} & \text{for } x \geq 2 \\ 0 & \text{for } x < 2 \end{cases} \]

(a) What is \(c \)?
(b) What is the probability that I throw the bale to a height no more than 3 yards?
(c) The prize a contestant receives is \(100x^2 + 100 \) euro if he or she tosses the bale \(x \) yards. What is my expected prize?

2. Eggs at certain stall at the South Bend farmers market have a weight that is normally
distributed with mean 2oz and standard deviation .2oz. The weights of individual eggs are
independent of each other.

(a) I buy six eggs. What is the probability that at most one of them weighs less than 1.7oz?
(b) The egg vendor weighs one egg and tells me that it is very light; so light, in fact, that
only 3% of all his eggs are that light or lighter. What’s the weight of the egg?
(c) A competing vendor, whose eggs also have a weight that is normally distributed with
mean 2oz, promises me that she can be 95% confident that one of her eggs weights 7.8
and 8.2 oz. What is the standard deviation of the weights of her eggs?

3. A pair of random variables \(X, Y \) have joint density \(f(x, y) \) that takes value \(\frac{3}{4}x \) in the triangle
with vertices \((0,0), (2,0)\) and \((0,2)\), and value 0 elsewhere.

(a) Find the marginal density of \(X \).
(b) Find the distribution function (CDF) of \(X + Y \).
(c) Find the density of \(X + Y \)

4. My dog Casey (http://www3.nd.edu/~dgalvin1/personal/Casey/Casey1.jpg) spends most
of her time staring out the window watching for squirrels. They run by at random times, at
a constant average of one every 10 minutes.

(a) What is the probability that Casey sees two or fewer squirrels in next 30 minutes?
(b) Casey arrives at the window at 2pm. What is the probability that she sees her first squirrel sometime between 2.15pm and 2.20pm?

(c) At 3pm Casey settles down for a nap. The amount of time she naps for is exponential with average 20 minutes. Write down (but don’t evaluate) an integral whose value is the probability that no squirrel runs by the window during her nap.

5. The two parts of this question are unrelated.

(a) The gaps between consecutive clicks of a Geiger counter are (independent) exponential random variables, always with the same parameter. An operator reports that 50% of all gaps are 6 seconds or longer. What is the parameter λ of the gap between consecutive clicks?

(b) Historical data indicates that the daytime high temperature in South Bend on Christmas day is normally distributed with mean -5 degrees Celsius and standard deviation of 12 degrees Celsius. What is the mean and standard deviation of the temperature measured in degrees Fahrenheit? (To convert from Celsius to Fahrenheit, divide by 5, multiply by 9 and add 32.)

6. Let Θ be a random variable that is uniformly distributed on the interval $(-\pi/2, \pi/2)$, and let $Y = \sin \Theta$ (so Y is the y-coordinate of a randomly chosen point on the top half of a unit circle).

(a) What is the distribution function (CDF) of Θ?

(b) What is the distribution function (CDF) of Y?

(c) What is the density function of Y?