Introduction to Probability, Fall 2013

Math 30530 Section 01

Homework 10 — due in class Monday, December 9

General information

At the top of the first page, write your name, the course number and the assignment number. If you use more than one page, you should **staple all your pages together**. The grader reserves the right to leave ungraded any assignment that is disorganized, untidy or incoherent.

Reading

• Sections 4.1, 4.4 and 4.2

Problems

- 1. (a) Let X be a uniformly selected random number on the interval [0,1]. For a > 0and $b \in \mathbb{R}$, let Y = aX + b. Calculate the density function of Y.
 - (b) Write down the density function of a uniformly selected random number on the interval [b, a + b] $(a > 0 \text{ and } b \in \mathbb{R})$.

Hint: your answer to both parts should be the same — if $X \sim \text{Uniform}(0, 1)$, then $aX + b \sim \text{Uniform}(b, a + b)$.

2. I throw a dart *n* times at a dartboard with radius 1, each time selecting a uniform and independent point from the board. Let X_i be the random variable that records the distance from my *i*th throw to the center of the dartboard, and let $Y_{(n)}$ be the distance to the center of the dartboard of my *closest* throw (i.e.

$$Y_{(n)} = \min\{X_1, \dots, X_n\}).$$

- (a) Find the density function of $Y_{(n)}$.
- (b) For n = 1, 2, 3, 4, find $E(Y_{(n)})$.
- (c) For n = 1, 2, 3, 4, find $Pr(Y_{(n)} < .5)$.

Note: we did n = 2 in class.

3. Use the transform of the exponential random variable (which we calculated in class) to compute E(X) and Var(X) when $X \sim exponential(\lambda)$.

- 4. (a) Let $X \sim \text{Poisson}(\lambda)$. Calculate the transform X.
 - (b) Let $X \sim \text{Poisson}(\lambda_1)$ and $Y \sim \text{Poisson}(\lambda_2)$ be independent. Use transforms to show that $X + Y \sim \text{Poisson}(\lambda_1 + \lambda_2)$.
- 5. I choose r items from a collection of N + M items, one after the other, without replacement. N of the items are "good" and the remaining M are "bad". Let X_i be the indicator random variable indicating whether the *i*th item I chose was good (so $X_i = 1$ if the *i*th item was good, and $X_i = 0$ if it was bad). For $i \neq j$, calculate the covariance $Cov(X_i, X_j)$, and the correlation coefficient. (Note: it should be very small, going to 0 as N and M go to infinity; this justifies treating samples without replacement as being essentially independent when the population is large).
- 6. Chapter 4, problem 29.
- 7. Chapter 4, problem 30.
- 8. Chapter 4, problem 17.
- 9. Chapter 4, problem 18.
- 10. Chapter 4, problem 19.