1. (a) Let X be a uniformly selected random number on the interval $[0, 1]$. For $a > 0$ and $b \in \mathbb{R}$, let $Y = aX + b$. Calculate the density function of Y.

Solution: Possible values for Y: anything from b to $a + b$. For each $b \leq y \leq a + b$,

$$\Pr(Y \leq y) = \Pr(aX + b \leq y) = \Pr(X \leq (y - b)/a) = (y - b)/a,$$

the last equality using the fact that X is uniform on $[0, 1]$. So, the CDF of Y is

$$F_Y(y) = \begin{cases}
0 & \text{if } y < a, \\
(y - b)/a & \text{if } a \leq y \leq b + a, \\
1 & \text{if } y > b + a,
\end{cases}$$

and the density of Y is

$$f_Y(y) = \begin{cases}
0 & \text{if } y < a, \\
1/a & \text{if } a \leq y \leq b + a, \\
0 & \text{if } y > b + a.
\end{cases}$$

(b) Write down the density function of a uniformly selected random number on the interval $[b, a + b]$ ($a > 0$ and $b \in \mathbb{R}$).

Solution: Exactly the same as the density of Y in the last part: if X is a uniformly selected random number on the interval $[b, a + b]$, then the density of X is

$$f_X(x) = \begin{cases}
0 & \text{if } x < a, \\
1/a & \text{if } a \leq x \leq b + a, \\
0 & \text{if } x > b + a.
\end{cases}$$

2. I throw a dart n times at a dartboard with radius 1, each time selecting a uniform and independent point from the board. Let X_i be the random variable that records the distance from my ith throw to the center of the dartboard, and let $Y(n)$ be the distance to the center of the dartboard of my closest throw (i.e. $Y(n) = \min\{X_1, \ldots, X_n\}$).
(a) Find the density function of $Y(n)$.

Solution: We start with the CDF of $Y(n)$. The possible values of $Y(n)$ are anything from 0 to 1, so we each $0 \leq y \leq 1$ we want to compute $\Pr(Y(n) \leq y)$. It’s easier to compute $\Pr(Y(n) \geq y)$, because

$$
\Pr(Y(n) \geq y) = \Pr(\min\{X_1, \ldots, X_n\} \geq y) = \Pr(X_1 \geq y \text{ AND } X_2 \geq y \text{ AND } \ldots \text{ AND } X_n \geq y) = (\Pr(X_1 \geq y))^n.
$$

The probability that $X_1 \geq y$ is the probability of landing in the annulus outside the circle of radius y, which is $(\pi 1^2 - \pi y^2)/(\pi 1^2) = 1 - y^2$. So

$$
\Pr(Y(n) \leq y) = 1 - \Pr(Y(n) \geq y) = 1 - (1 - y^2)^n.
$$

It follows that the CDF of $Y(n)$ is

$$
F_n(y) = \begin{cases}
0 & \text{if } y < 0, \\
1 - (1 - y^2)^n & \text{if } 0 \leq y \leq 1, \\
1 & \text{if } y > 1,
\end{cases}
$$

and the density of $Y(n)$ is

$$
f_n(y) = \begin{cases}
0 & \text{if } y < 0, \\
2yn(1 - y^2)^{n-1} & \text{if } 0 \leq y \leq 1, \\
0 & \text{if } y > 1.
\end{cases}
$$

(b) For $n = 1, 2, 3, 4$, find $E(Y(n))$.

Solution: From the density, $E(Y(n)) = \int_0^1 2y^2n(1 - y^2)^{n-1} \, dy$. Calculating this integral for $n = 1, 2, 3, 4$ gives values of $2/3$, $8/15$, $16/35$, and $128/315$ (roughly .67, .53, .46, and .41).

(c) For $n = 1, 2, 3, 4$, find $\Pr(Y(n) < .5)$.

Solution: From the density, $\Pr(Y(n) < .5) = \int_0^{.5} 2yn(1 - y^2)^{n-1} \, dy$. Calculating this integral for $n = 1, 2, 3, 4$ gives values of $.25$, $.4375$, $.578125$, and $.68359375$.

3. Use the transform of the exponential random variable (which we calculated in class) to compute $E(X)$ and $\text{Var}(X)$ when $X \sim \text{exponential}(\lambda)$.

Solution: We computed $M_X(s) = \frac{\lambda}{\lambda - s}$ for $X \sim \text{exponential}(\lambda)$ (as long as $s < \lambda$), so

$$
M'_X(s) = \frac{\lambda}{(\lambda - s)^2}, \quad \text{so} \quad E(X) = M'_X(0) = \frac{1}{\lambda},
$$

and

$$
M''_X(s) = \frac{2\lambda}{(\lambda - s)^3}, \quad \text{so} \quad E(X^2) = M''_X(0) = \frac{2}{\lambda^2},
$$

so

$$
\text{Var}(X) = \frac{2}{\lambda^2} - \left(\frac{1}{\lambda}\right)^2 = \frac{1}{\lambda^2}.
$$
4. (a) Let $X \sim \text{Poisson}(\lambda)$. Calculate the transform X.

Solution: $P(K = k) = \frac{\lambda^k}{k!} e^{-\lambda}$ for $X \sim \text{Poisson}(\lambda)$ ($k = 0, 1, 2, 3, \ldots$), so

$$
M_X(s) = E(e^{sX}) = \sum_{k=0}^{\infty} e^{sk} \lambda^k \frac{1}{k!} e^{-\lambda} = e^{-\lambda} \sum_{k=0}^{\infty} \frac{(e^s \lambda)^k}{k!} = e^{-\lambda} e^{e^s \lambda} = e^{\lambda(e^s-1)},
$$

the second-from-last inequality using the power series for e^x, $e^x = 1 + x + \ldots + x^{r-1} + \ldots$. This transform is valid for all s.

(b) Let $X \sim \text{Poisson}(\lambda_1)$ and $Y \sim \text{Poisson}(\lambda_2)$ be independent. Use transforms to show that $X + Y \sim \text{Poisson}(\lambda_1 + \lambda_2)$.

Solution: From previous part,

$$
M_X(s) = e^{\lambda_1(e^s-1)}, \quad M_Y(s) = e^{\lambda_2(e^s-1)}.
$$

Since we know that the transform of a sum of independent rvs is a product of the transforms, we get

$$
M_{X+Y}(s) = e^{\lambda_1(e^s-1)} e^{\lambda_2(e^s-1)} = e^{\lambda_1(e^s-1) + \lambda_2(e^s-1)} = e^{(\lambda_1+\lambda_2)(e^s-1)}.
$$

This is exactly the transform of a Poisson random variable with parameter $\lambda_1 + \lambda_2$, and so we are done.

5. I choose r items from a collection of $N + M$ items, one after the other, without replacement. N of the items are “good” and the remaining M are “bad”. Let X_i be the indicator random variable indicating whether the ith item I chose was good (so $X_i = 1$ if the ith item was good, and $X_i = 0$ if it was bad). For $i \neq j$, calculate the covariance $\text{Cov}(X_i, X_j)$, and the correlation coefficient. (Note: it should be very small, going to 0 as N and M go to infinity; this justifies treating samples without replacement as being essentially independent when the population is large).

Solution: There are $N \cdot \text{times} (N + M - 1)(N + M - 2) \ldots (N + M - (r - 1))$ ways of choosing the r items so that the ith is good (think about choosing the ith item first, from among the N good items, and choosing the remaining $r - 1$ items arbitrarily from what’s left). There are $(N + M)(N + M - 1)(N + M - 2) \ldots (N + M - (r - 1))$ ways of choosing the r items, in total. So

$$
\Pr(X_i = 1) = \frac{N \times (N + M - 1)(N + M - 2) \ldots (N + M - (r - 1))}{(N + M)(N + M - 1)(N + M - 2) \ldots (N + M - (r - 1))} = \frac{N}{N + M},
$$

and $\Pr(X_i = 0) = M/(N + M)$. Similarly,

$$
\Pr(X_j = 1) = \frac{N}{N + M},
$$
and \(\Pr(X_j = 0) = M/(N + M) \). We thus get that

\[
E(X_i) = \frac{N}{N + M}, \quad E(X_i^2) = \frac{N}{N + M}, \quad \text{Var}(X_i) = \frac{MN}{(N + M)^2},
\]

and

\[
E(X_j) = \frac{N}{N + M}, \quad E(X_j^2) = \frac{N}{N + M}, \quad \text{Var}(X_j) = \frac{MN}{(N + M)^2}.
\]

There are \(N(N-1) \) times \((N+M-2)(N+M-3) \ldots (N+M-(r-1)) \) ways of choosing the \(r \) items so that the \(i \)th and \(j \)th are both good (think about choosing the \(i \)th item first, then the \(j \)th item, from among the \(N \) good items, and choosing the remaining \(r-2 \) items arbitrarily from what’s left). There are \((N+M)(N+M-1)(N+M-2) \ldots (N+M-(r-1)) \) ways of choosing the \(r \) items, in total. So

\[
\Pr(X_i X_j = 1) = E(X_i X_j)
\]

\[
= \frac{N(N-1) \times (N+M-2) \ldots (N+M-(r-1))}{(N+M)(N+M-1)(N+M-2) \ldots (N+M-(r-1))}
\]

\[
= \frac{N(N-1)}{(N+M)(N+M-1)},
\]

and so

\[
\text{Cov}(X_i, X_j) = E(X_i X_j) - E(X_i)E(X_j)
\]

\[
= \frac{N(N-1)}{(N+M)(N+M-1)} - \left(\frac{N}{N+M} \right)^2
\]

\[
= -\frac{NM}{(N+M)^2(N+M-1)}
\]

and

\[
\rho = \frac{\text{Cov}(X_i, X_j)}{\sqrt{\text{Var}(X_i) \text{Var}(X_j)}}
\]

\[
= \frac{-NM}{(N+M)^2(N+M-1)} \cdot \frac{MN}{(N+M)^2}
\]

\[
= -\frac{1}{N + M - 1}
\]

This is indeed small; this shows that although \(X_i \) and \(X_j \) are very slightly (negatively) correlated, when \(N + M \) is large they are essentially uncorrelated.

6. Chapter 4, problems 29 and 30 — see the supplementary solution file 1.

7. Chapter 4, problems 17, 18 and 19 — see the supplementary solution file 2.