
Introduction to Probability, Fall 2013

Math 30530 Section 01

Homework 1 — Solutions

1. Chapter 1, problem 1.

Solution: A = {2, 4, 6} and B = {4, 5, 6}, so:

A ∪B = {2, 4, 5, 6}, (A ∪B)c = {1, 3}.

On the other hand,

Ac = {1, 3, 5}, Bc = {1, 2, 3}, Ac ∩Bc = {1, 3}.

So (A ∪B)c = Ac ∩Bc in this case.

Also:
A ∩B = {4, 6}, (A ∩B)c = {1, 2, 3, 5}.

On the other hand,

Ac = {1, 3, 5}, Bc = {1, 2, 3}, Ac ∪Bc = {1, 2, 3, 5}.

So (A ∩B)c = Ac ∪Bc in this case.

2. Chapter 1, problem 2 (Note: I don’t expect you to remember these kinds of equations.
The point of this exercise is just to highlight that the same event can often be expressed
in lots of different ways).

Solution: (a) This part I’ll do very formally. First we show that Ac ⊆ (Ac ∩ B) ∪
(Ac ∩ Bc). Suppose x ∈ Ac. If x ∈ B, then x ∈ Ac ∩ B. If x ∈ Bc, then x ∈
Ac ∩ Bc. One of x ∈ B, x ∈ Bc must happen, and we’ve just shown that either way,
x ∈ (Ac ∩B) ∪ (Ac ∩Bc). So Ac ⊆ (Ac ∩B) ∪ (Ac ∩Bc).

Now we show that (Ac ∩ B) ∪ (Ac ∩ Bc) ⊆ Ac. Suppose x ∈ (Ac ∩ B) ∪ (Ac ∩ Bc).
Then EITHER x ∈ Ac ∩ B, in which case in particular x ∈ Ac, OR x ∈ Ac ∩ Bc,
in which case again in particular x ∈ Ac. So either way x ∈ Ac. This shows that
(Ac ∩B) ∪ (Ac ∩Bc) ⊆ Ac. We’ve shown that

Ac ⊆ (Ac ∩B) ∪ (Ac ∩Bc) AND (Ac ∩B) ∪ (Ac ∩Bc) ⊆ Ac.

The only way this could happen is if Ac = (Ac ∩B) ∪ (Ac ∩Bc).
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Now onto (b), which I’ll just talk through. The left-hand side, (A∩B)c, is all elements
of the universe that are not in BOTH A AND B. Something can not be in both A and
B in three distinct (mutually exclusive) ways: EITHER it’s not in A, but is in B (so
its in Ac ∩B), OR it’s not in A, and not in B (so its in Ac ∩Bc), OR it is in A, but is
not in B (so its in A ∩ Bc). So another way of describing all elements of the universe
that are not in both A and B is to say that they are all the elements that are either in
Ac ∩B, or in Ac ∩Bc, or in A ∩Bc. In other words:

(A ∩B)c = (Ac ∩B) ∪ (Ac ∩Bc) ∪ (A ∩Bc).

Either approach (formal or by words) is fine as long as you understand what you are
doing. Another possible approach is through drawing a Venn diagram; we’ll see that
in Question 16.

Now onto (c). A = {1, 3, 5} and B = {1, 2, 3} so

A ∩B = {1, 3}, (A ∩B)c = {2, 4, 5, 6},

and

Ac∩B = {2}, Ac∩Bc = {4, 6}, A∩Bc = {5}, (Ac∩B)∪(Ac∩Bc)∪(A∩Bc) = {2, 4, 5, 6};

so (A ∩B)c = (Ac ∩B) ∪ (Ac ∩Bc) ∪ (A ∩Bc) are equal in this case.

3. Chapter 1, problem 5.

Solution: Let G be event of student being a genius, and C the event of student loving
chocolate. Know: Pr(G) = .6, Pr(C) = .7, Pr(G ∩ C) = .4. Want: Pr((G ∪ C)c).

First use Pr(G∪C) = Pr(G) + Pr(C)−Pr(G∩C) to get Pr(G∪C) = .6 + .7− .4 = .9.
Then use Pr((G ∪ C)c) = 1− Pr(G ∪ C) to get Pr((G ∪ C)c) = 1− .9 = .1.

4. Chapter 1, problem 6

Solution: Let po be the common probability for all the odd faces, and pe the common
probability for all the even faces. Since all probabilities add to 1, have

3p0 + 3pe = 1.

We also have, from the problem,
pe = 2po.

Solving this system, get p0 = 1/9 and pe = 2/9, and so

Pr({1, 2, 3}) = 2po + pe = 4/9.
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5. (a) Chapter 1, problem 7.

Solution: I’m assuming that the numbers on the dice are 1, 2, 3 and 4. The
sample space consists of all vectors of finite length, whose last co-ordinate is a 2 or
4, and with all the other co-ordinates being either a 1 or a 3, TOGETHER WITH
all infinite vectors with all the co-ordinates being either a 1 or a 3 (this last part
of the sample space encodes all the ways of NEVER getting an even number —
unlikely but conceivable, so should be in the sample space).

(b) Let En denote the event that the experiment described in Chapter 1, problem 7
ends after exactly n rolls.

i. What points of the sample space are contained in En?

Solution: All vectors of length n, whose last co-ordinate is a 2 or 4, and with
all the other co-ordinates being either a 1 or a 3.

ii. What points of the sample space are contained in (∪∞n=1En)c?

Solution: (∪∞n=1En) describes all the outcomes where the experiment ends in
some finite time; so when we take the complement, we are left with all the
outcomes where the experiment does not end in finite time. That is, it’s the
set of all infinite vectors with all the co-ordinates being either a 1 or a 3.

6. Chapter 1, problem 8 (so that everyone is using the same notation: say that A, B and
C are the three opponents, and that you know that you can beat A with probability p,
B with probability q and C with probability r; assume that p > q > r).

Solution: Suppose you play A, then B, then C. Your probability of beating all three
is pqr. Your probability of beating A and B and losing to C is pq(1 − r), and your
probability of losing to A and beating B and C is (1−p)qr. These are the three distinct
ways of winning at least two in a row, so your probability of winning at least 2 in a
row in this case is:

ABC −→ pqr + pq(1− r) + (1− p)qr.

If you play C first, then B, then A, the probability is:

CBA −→ rqp + rq(1− p) + (1− r)qp,

which it is easy to see is exactly the same as the probability for A, then B, then C.

By the same reasoning, we have:

BAC −→ qpr + qp(1− r) + (1− q)pr,

which is exactly the same as CAB, and

BCA −→ qrp + qr(1− p) + (1− q)rp,

which is exactly the same as BAC.
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We want to show that the BAC probability (putting the weakest player, the one you
are most likely to beat, in the middle) (which, as we’ve calculated, is the same as
CAB probability) is the largest among the three different probabilities that we have
calculated. I.e., we want

qpr + qp(1− r) + (1− q)pr > pqr + pq(1− r) + (1− p)qr,

which is the same as

qp− qpr + pr − qpr > pq − pqr + qr − pqr

which is the same as
pr > qr

which is the same as
p > q,

which we know is true. By similar reasoning,

qpr + qp(1− r) + (1− q)pr > qrp + qr(1− p) + (1− q)rp

reduces to
p > r,

which we know is true.

7. Chapter 1, problem 9 (a) only).

Solution: We first show that A = (A∩S1)∪ (A∩S2)∪ . . .∪ (A∩Sn). We could do this
very formally, or just talk through it. Talking through it, we could say: Suppose x ∈ A.
Then of course x appears on the left-hand side. Does it appear on the right-hand side?
Yes: because Ω = S1 ∪ . . . ∪ Sn, x must appear in one of the S’s, say Si. That puts
x ∈ A ∩ Si, so puts it in the set described on the right-hand side. Now suppose x 6∈ A.
Then of course x doesn’t appear on the left-hand side. Does it appear on the right-hand
side? No: if it did, it would be in one of the A∩ Si’s, so it would be in A, but it’s not.
So the right-hand side is a way of describing exactly everything in A, as we wanted.

Next, notice that A∩S1, A∩S2, . . . A∩Sn are all disjoint: if x ∈ A∩Si, and x ∈ A∩Sj,
for some different Si, Sj, then x ∈ Si and x ∈ Sj; but that’s impossible since the S’s
are disjoint.

Now we can apply Axiom 2 of the axioms of Probability (or rather, the slight extension
of it that we proved in class), to conclude that since A = (A∩S1)∪(A∩S2)∪. . .∪(A∩Sn)
and the terms unioned on the right-hand side are disjoint, we have

Pr(A) = Pr(A ∩ S1) + Pr(A ∩ S2) + . . . + Pr(A ∩ Sn).
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8. Chapter 1, problem 10.

Solution: Because A = (A ∩B) ∪ (A ∩Bc), and A ∩B, A ∩Bc are disjoint, we have

Pr(A) = Pr(A ∩B) + Pr(A ∩Bc).

Similarly
Pr(B) = Pr(A ∩B) + Pr(Ac ∩B).

So, adding,

Pr(A) + Pr(B) = Pr(A ∩B) + Pr(A ∩Bc) + Pr(A ∩B) + Pr(Ac ∩B).

Rearranging,

Pr(A ∩Bc) + Pr(Ac ∩B) = Pr(A) + Pr(B)− 2 Pr(A ∩B).

But now notice that A ∩Bc, Ac ∩B are disjoint, so

Pr(A ∩Bc) + Pr(Ac ∩B) = Pr((A ∩Bc) ∪ (Ac ∩B)).

Putting these last two together we get

Pr((A ∩Bc) ∪ (Ac ∩B)) + Pr(A) + Pr(B)− 2 Pr(A ∩B).

9. A bag has three balls in it: 1 red, 1 blue and 1 green. Here’s an experiment: pick a
ball at random, note its color, return it to the bag, then again pick a ball at random,
and note its color.

(a) Write down a sample space for this experiment.

Solution: One possibility is

Ω = {RR,RB,RG,BR,BB,BG,GR,GB,GG}

where, for example, RG indicates the outcome “red ball drawn first, green ball
second”.

(b) Calculate the probability that the two colors observed are the same.

Solution: A reasonable assumption here is that all 9 of the outcomes of Ω are
equally likely, that is, that we have a discrete uniform probability model. Let E be
the event that the two balls drawn have the same color, so E = {RR,GG,BB},
and Pr(E) = 3/9 = 1/3.

10. A system has 5 components, each of which is either working or failed. An experiment
consists of observing the 5 components, and recording the status of each one. Record
an outcome of this experiment by a vector (x1, x2, x3, x4, x5), with xi = 0 if component
i is failed, and xi = 1 if it is working.
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(a) How big is the sample space?

Solution: There are 2 choices for x1. Whatever we choose for x1, there are 2
choices for x2; so there are 2× 2 = 4 choices for (x1, x2). Whatever we choose for
(x1, x2), there are 2 choices for x3; so there are 2 × 4 = 8 choices for (x1, x2, x3).
Continuing in this way, we get a total of 2 × 2 × 2 × 2 × 2 = 32 choices for
(x1, x2, x3, x4, x5).

(b) How many outcomes in the event “Component 1 is working, and component 4 is
failed”?

Solution: We must have x1 = 1 and x4 = 0. There are 2 choices for x2, then
whatever we choose for x2, there are 2 choices for x3, then whatever we choose for
x3, there are 2 choices for x5, leading to 2× 2× 2 = 8 choices for (x2, x3, x5). So
there are 8 outcomes in the event under discussion.

(c) Suppose that the system works if EITHER components 1 and 2 are both working
OR components 3 and 4 are both working OR components 1, 3 and 5 are working.
Write down all the outcomes in the event “The system is working”.

Solution: The easiest approach is to list all 32 possible outcomes, and check which
ones satisfy at least one of the three conditions (1, 2 working, or 3, 4 working, or
1, 3, 5 working). There are 15 of them in all.

11. A and B are mutually exclusive events with Pr(A) = .3 and Pr(B) = .5.

(a) What is the probability that either A or B occurs?

Solution: Pr(A ∪ B) = Pr(A) + Pr(B) − Pr(A ∩ B) = .3 + .5 − 0 = .8 (the “0”
for Pr(A ∩B) is because A and B are mutually exclusive).

(b) What is the probability that A occurs but B does not?

Solution: Once A occurs, we know for certain that B does not (because A and B
are mutually exclusive), so “A occurs but B does not” is the same as “A occurs”;
the probability is .3.

(c) What is the probability that both A and B occur?

Solution: This is 0 because A and B are mutually exclusive events.

12. Put a rook at a random square on an 8 by 8 chessboard (all squares equally likely).
Put a second rook down on a random different square (all free squares equally likely);
keep going, always putting a new rook down on a randomly chosen square that doesn’t
already have a rook on it (all free squares equally likely). After having put down 8
rooks, what is the probability that no two rooks are attacking each other (that is, on
the same row of same column as each other)?
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Solution: How many outcomes in the sample space,

Ω = all ways of places rooks numbered 1 through 8 on distinct squares of the chessboard?

There are 64 choices for where to put rook 1, then (regardless of where rook 1 goes)
63 choices for where to put rook 2, then (regardless of where rooks 1 and 2 goes) 62
choices for where to put rook 3, and so on down to 57 choices for the placement of rook
8 (regardless of where rooks 1 through 7 go). This means that

|Ω| = 64× 63× 62× 61× 60× 59× 58× 57.

It’s a reasonable assumption, given the description of the problem, that all of these
outcomes are equally likely, that is, that we have a discrete uniform probability model.
Let E be the event that no two rooks are attacking each other. How big is E? There
are 64 choices for where to put rook 1. In E, this rules out not one location for rook 2,
but rather 15 locations (the place we put rook 1, and everything in its row and column).
An easier way to say this is that once rook 1 is placed, if we don’t want to place a rook
in the same row or column as rook 1, then rook 2 must go in the 7 by 7 chessboard
(49 squares, same as 64−15) obtained from the regular chessboard by deleting the row
and column of rook 1. Once rook 2 has been placed somewhere on the 7 by 7 board,
if we don’t want to place another rook in the same row or column as either rook 1 or
rook 2, then rook 3 must go in the 6 by 6 chessboard (36 squares) obtained from the
regular chessboard by deleting the row and column of rook 1, and the row and column
of rook 2. Carrying on this way, we find that there are 25 choices for placement of rook
4, 16 choices for placement of rook 5, 9 choices for placement of rook 6, 4 choices for
placement of rook 7, and 1 choice for placement of rook 8, leading to

|E| = 64× 49× 36× 25× 16× 9× 4× 1.

Since we are in a discrete uniform probability model,

Pr(E) =
|E|
|Ω|

=
64× 49× 36× 25× 16× 9× 4× 1

64× 63× 62× 61× 60× 59× 58× 57
≈ 9.1× 10−6.

13. There are 5 hotels in downtown South Bend. Last night, 3 travellers arrived from
distant La Porte, Indiana. Each of the three picked a hotel at random from among the
five to check-in to (each hotel equally likely). The three travellers didn’t communicate
with each other about their check-in plans.

(a) What is the probability that all three stayed at different hotels?

Solution: The sample space for this experiment consists of all triples (a, b, c)
where each of a, b, c is a number from among 1, 2, 3, 4, 5 (so, for example,
outcome (1, 1, 1) means that all three stayed in hotel number 1). All sample
points are equally likely (it seems from the problem description that we should
assume this), so we are in a discrete uniform probability model. We have

|Ω| = 5× 5× 5 = 125
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(the first traveller has 5 choices, so does the second, and so does the third). Let
E be the event that the three choose different hotels. We have

|E| = 5× 4× 3 = 60

(the first traveller has 5 choices, but once the first has made his choice, the second
only has 4 choices, since he must stay in a different hotel from the first; then the
third has 3 choices). So Pr(E) = 60/125 = 12/25 = .48.

(b) What is the probability that all three stayed at the same hotel?

Solution: Let F be the event that all three choose the same hotel. We have
|F | = 5 (the outcomes in E are (1, 1, 1), (2, 2, 2), (3, 3, 3), (4, 4, 4) and (5, 5, 5)), so
Pr(F ) = 5/125 = 1/25 = .04.

14. Let E, F and G be three events. Using ∪, ∩ and c, find expressions (such as F ∩ Gc)
for each of the following events:

(a) Only E occurs.

Solution: There are many possible answers for this and all the other parts. One
is E ∩ F c ∩Gc.

(b) At least one of E, F and G occurs.

Solution: E ∪ F ∪G.

(c) All three of E, F and G occur.

Solution: E ∩ F ∩G.

(d) At most one of E, F and G occur.

Solution: I’ll do this as “either none occur, or only E, or only F , or only G”:

(E ∪ F ∪G)c ∪ (E ∩ F c ∩Gc) ∪ (Ec ∩ F ∩Gc) ∪ (Ec ∩ F c ∩G).

(e) Exactly two of E, F and G occur.

Solution: I’ll do the “or” of each of the three ways of getting exactly two to
occur:

(E ∩ F ∩Gc) ∪ (E ∩ F c ∩G) ∪ (Ec ∩ F ∩G).

15. Use the axioms of probability to show that if E and F are any events, then

Pr(E ∩ F ) ≥ Pr(E) + Pr(F )− 1.

Solution: We showing in class, using the axioms, that

Pr(E ∪ F ) = Pr(E) + Pr(F )− Pr(E ∩ F ),
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or
Pr(E ∩ F ) = Pr(E) + Pr(F )− Pr(E ∪ F ).

Notice that E∪F ⊆ Ω, so from another fact that we showed in class (from the axioms)

Pr(E ∪ F ) ≤ Pr(Ω) = 1

(the last equality from Axiom 3). Combing these last two equations we get

Pr(E ∩ F ) ≥ Pr(E) + Pr(F )− 1.

16. Use a Venn diagram to explain why the following relations between events are always
true:

(a) E ∩ F ⊆ E ⊆ E ∪ F .

Solution: E ∩ F ⊆ E: This just involves observing that in the typical Venn
diagram drawing of E and F inside Ω, the region corresponding to E ∩ F (the
football shaped region between E and F ) is completely contained in the region
corresponding to E.

E ⊆ E∪F : This just involves observing that in the typical Venn diagram drawing
of E and F inside Ω, the region corresponding to EF is completely contained in
the region corresponding to E ∪ F (the “infinity” (∞) shaped region that covers
both E and F ).

(b) If E ⊆ F then F c ⊆ Ec.

Solution: Knowing that E ⊆ F , we don’t draw a typical Venn diagram, with
E and F intersecting; instead we put E completely inside of F . Then F c is the
region outside F , which is completely contained in Ec, which is the region outside
F , together with the region between E and F .

17. Go to Random.org’s dice roller (http://www.random.org/dice/), and select two dice.
Roll the two dice 50 times, and each time record the difference between the higher and
the lower number rolled (it will be one of 0, 1, 2, 3, 4 or 5). Record your results in a
table like the one below (your actual “times rolled” numbers may be different):

difference 0 1 2 3 4 5
times rolled 3 14 15 8 6 4

(a) Let pi be the probability that when you roll two dice, the difference between the
two numbers you roll is exactly i. Use your data to empirically guess at the values
of p0, p1, p2, p3, p4 and p5.

Solution: The results that I got are given in the table above. They suggest:

p0 = 3/50 = .06, p1 = .28, p2 = .3, p3 = .16, p4 = .12, p5 = .08.
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(b) Use your guesses to estimate the probability that when you roll two dice, the
difference between the two numbers you roll is at least 3.

Solution: Pr({3, 4, 5}) = .16 + .12 + .08 = .36.

(c) By listing all the events in the sample space of roll two dice, calculate pi exactly
for each i, and calculate the exact probability that the difference between the two
numbers is at least 3.

Solution:

p0 = 6/36, p1 = 10/36, p2 = 8/36, p3 = 6/36, p4 = 4/36, p5 = 2/36

(for example, of the 36 equally likely outcomes for (number on first dice, number
on second), 4 of them ((1, 5), (2, 6), (5, 1), (6, 2)) give a difference of 4). So the
exact answer for the probability of getting a difference of at least 3 is

Pr({3, 4, 5}) = 6/36 + 4/36 + 2/36 = 12/36 = .33 . . . ,

a little bit lower than the empirical estimate.
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