
Introduction to Probability, Fall 2013

Math 30530 Section 01

Homework 4 — Solutions

1. Chapter 2, Problem 1

2. Chapter 2, Problem 2

3. Chapter 2, Problem 3

4. Chapter 2, Problem 5

5. Chapter 2, Problem 6

6. Chapter 2, Problem 7b) (we did a) in class)

7. Chapter 2, Problem 10

Solutions: See the supplementary solutions page.

8. You are in a room with 5 doors, and your host tells you that behind each of two
randomly chosen doors he has placed a prize (all choices of two doors equally likely).
You open the doors, one after another, from left to right. Let X be the random variable
that measures the number of doors you open after seeing the first prize you see, but
before seeing the second prize.

(a) What are the possible values that X can take on?

Solution: 0, 1, 2 or 3

(b) Compute the probability mass function of X.

Solution: There are 120 possible orders for opening the doors, all equally likely.
Number in which prize doors are 1st and 2nd: 2!3! = 12; number in which prize
doors are 2nd and 3rd: 2!3! = 12; number in which prize doors are 3rd and 4th:
2!3! = 12; number in which prize doors are 4th and 5th: 2!3! = 12; so number in
which X = 0: 48.

Number in which prize doors are 1st and 3th: 2!3! = 12; number in which prize
doors are 2nd and 4th: 2!3! = 12; number in which prize doors are 3rd and 5th:
2!3! = 12; so number in which X = 1: 36.

Number in which prize doors are 1st and 4th: 2!3! = 12; number in which prize
doors are 2nd and 5th: 2!3! = 12; so number in which X = 2: 24.
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Number in which prize doors are 1st and 5th: 2!3! = 12; so number in which
X = 3: 12.

So

pX(x) =



48
120

= .4 if x = 0
36
120

= .3 if x = 1
24
120

= .2 if x = 2
12
120

= .1 if x = 3
0 otherwise.

(Note that these numbers add to 1.)

(c) What is the probability that X is at least 2?

Solution: Pr(X ≥ 2) = .1 + .2 = .3.

9. Consider the following seven random processes:

(a) I buy a snack at the Huddle every day, and I eat the snack the same day as I buy
it 70% of the time. Let X be the number of times, within a four week period, that
I eat my snack on the day I buy it.

(b) 10% of milk cartons at Martins Supermarket are fat-free, 20% are 1% milk, 55%
are 2% milk, and the rest are full-fat (3.5% fat). I pick 10 cartons at random.
Each time, I record “0”, “1”, “2” or “3.5”, depending on whether I chose fat-free,
1%, 2% or full-fat. Let X be the total of my 10 readings.

(c) I watch people walking into class, until I see the first person who is 6 foot tall or
taller. Let X be the number of people I have to watch for this to happen.

(d) A magician asks six people, one after the other, to take a card from an ordinary
deck of cards. After each person selects a card, they replace it in the deck. After
this is done, he guesses the card that each person choose. Let X be the number
of cards he guesses correctly.

(e) Same as above, but now people do not return their cards.

(f) When the Yankees play the Red Sox in NYC, they win with probability .7. When
they play in Boston, they win with probability .3. All games are independent. Let
X be the number of games the Yankees win, if they play 10 games with the Red
Sox in Boston, and 8 in NYC.

(g) Same as above, but now X is the number of games that the home team wins (Red
Sox play home games in Boston, Yankees in NYC).

For each of the seven random variables X’s, say whether it is binomial or not. In those
cases where the random variable is binomial, say what n and p are; in those cases where
the random variable is not binomial, explain why not.

Solution: a) Binomial(28, .7). b) Not binomial: the individual trials are indepen-
dent, but I’m not counting “success” or “failure” for them. c) Not binomial: I don’t
fix number of trials in advance. d) Assuming the magician is guessing randomly,
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Binomial(52, 1/52). e) Assuming the magician does not guess the same card for two
different people (which wouldn’t make much sense in this context), it’s not binomial,
because the trials are not independent, or have same success probabilities. f) Not
binomial: the trials don’t all have the same success probability. g) Binomial(18, .7).

10. When a passanger books a flight on an airplane, (s)he will actual go ahead and use
the ticket only 96% of the time. All passengers operate independently of each other.
A plane has 210 seats. How many seats can the airline sell for this plane, and still be
95% sure that there will be enough seats for all the passengers who show up?

Solution: If he airline sells n tickets, then the number of people who show up is
Binomial with parameters n and .96, and there are enough seats if this binomial takes
value 210 or less. So we are looking for the largest n such that

Pr(X ≤ 210) ≥ .95, X ∼ Binomial(n, .96).

Using a binomial calculator, we find that n = 214.

11. 10 people each line up at a craps table, and each (independently) rolls two dice. The
house calls this process a “success” if the number of people who roll a sum of either 7
or 11 is four or fewer.

(a) When this experiment is performed, what’s the probability that the house will
record a success?

Solution: Let X be the number from among the ten who roll either 7 or 11. X
is binomial with n = 10, p = (6 + 2)/36 ≈ .222, so Pr(X ≤ 4) ≈ .95. This is the
probability that the house records “success”.

(b) If this trial is repeated many times, what’s the probability that it takes between
3 and 5 repeats (inclusive) for the first success to be recorded?

Solution: Let Y be the number of times the trial is repeated until the first success
is recorded. Y is a geometric random variable, with p = .95 (from the previous
part). So

Pr(3 ≤ Y ≤ 5) = (.05)2(.95) + (.05)3(.95) + (.05)4(.95) ≈ .0025.

12. 50,000 sensors are dropped randomly onto a desert surface that is shaped like a square,
with dimensions 200 meters by 200 meters. I examine a particular 1 meter by 1 meter
piece of the surface. Use the Poisson random variable to estimate:

(a) the probability that the piece has at least one sensor in it.

Solution: Let X be the number of sensors found in the 1 by 1 region. This is
1/40, 000th of the whole area, so the expected number of sensors is 50, 000/40, 000 =
1.25; we use a Poisson random variable with λ = 1.25 to model X.

Pr(X ≥ 1) = 1− Pr(X = 0) = 1− e−1.25 ≈ .713.
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(b) the probability that it has either 1 or 2 sensors in it.

Solution:

Pr(X ∈ {1, 2}) = 1.25e−1.25 +
(1.25)2

2!
e−1.25 ≈ .582.

13. Let X be a Poisson random variable with parameter λ. Show that

Pr(X is even) =
1

2

(
1 + e−2λ

)
.

(Hint: think about the Taylor expansion of e−λ + eλ about λ = 0.)

Solution:

Pr(X is even) = Pr(X = 0)+Pr(X = 2)+Pr(X = 4)+. . . = e−λ+
λ2

2
e−λ+

λ4

4!
e−λ+. . . .

The Taylor series of eλ is

eλ = 1 + λ+
λ2

2!
+
λ3

3!
+
λ4

4!
+ . . .

and the Taylor series of e−λ is

e−λ = 1− λ+
λ2

2!
− λ3

3!
+
λ4

4!
+ . . . ,

so the Taylor series of (eλ + e−λ)/2 is

eλ = 1 +
λ2

2!
+
λ4

4!
+ . . . .

So

Pr(X is even) = e−λ
(

1 +
λ2

2
+
λ4

4!
+ . . .

)
= e−λ

(
eλ + e−λ

2

)
=

1

2

(
1 + e−2λ

)
.

14. If I toss a coin repeatedly, the probability that after, say, 10 tosses, I haven’t seen the
first head, is (1/2)10. If I tell you that I already tossed the coin 6 times, and still haven’t
seen a head, then the probability that after a further 10 tosses I still haven’t seen the
first head is still (1/2)10 — the coin has no “memory” of the first 6 tosses; probability-
wise, you might as well reset the counter after learning about the 6 failures. The way
to encode this common sense idea is this: if X is a geometric random variable that
counts the number of tosses until the first head, then Pr(X > 16|X > 6) = Pr(X > 10)
(the probability that it takes me more than 16, given that it’s already taken me more
than 6, is exactly the same as the probability that it takes me more than 10, with me
starting counting from the moment that the conditional information about the first 6
tosses is given).
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(a) Verify this “memorylessness” in general: show that if X ∼ Geometric(p) then for
any integers m and k, Pr(X > m+ k|X > k) = Pr(X > m).

Solution:

Pr(X > m+ k|X > k) =
Pr(X > m+ k AND X > k)

Pr(X > k)
=

Pr(X > m+ k)

Pr(X > k)
=

(1− p)m+k

(1− p)k
= (1− p)m = Pr(X > m).

(b) Show, by an example, that if X is a binomial random variable (for concreteness,
the number of sixes you see when you roll a dice 10 times), then it is not the case
that Pr(X > m+ k|X > k) = Pr(X > m).

Solution: Take m = 1 and k = 1, for example (basically any choice will do).

Pr(X > 1 + 1|X > 1) =
Pr(X > 2 AND X > 1)

Pr(X > 1)
=

Pr(X > 2)

Pr(X > 1)
≈ .2249

.5156
≈ .4362 6= .5156 ≈ Pr(X > 1).

(c) Let X be a random variable that takes values 0, 1, 2, 3, . . ., and that satisfies the
memorylessness property Pr(X > m + k|X > k) = Pr(X > m) for all m and k.
Show that X must be a geometric random variable.

Solution: Notice that

Pr(X > m+ k|X > k) =
Pr(X > m+ k AND X > k)

Pr(X > k)
=

Pr(X > m+ k)

Pr(X > k)

so Pr(X > m+ k|X > k) = Pr(X > m) is the same as

Pr(X > m+ k) = Pr(X > m) Pr(X > k).

Plugging in m = 1 and k = 0 we get

Pr(X > 1) = Pr(X > 1) Pr(X > 0),

so Pr(X > 0) = 1, that is, Pr(X = 0) = 0. So we can in fact assume that X takes
values 1, 2, . . ..

With m = k = 1, get
Pr(X > 2) = Pr(X > 1)2.

With m = 2, k = 1, get

Pr(X > 3) = Pr(X > 2) Pr(X > 1),

which together with Pr(X > 2) = Pr(X > 1)2 gives

Pr(X > 3) = Pr(X > 1)3.
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Continuing in this way, we get that for all ` > 0,

Pr(X > `) = Pr(X > 1)`.

Define p by 1− p = Pr(X > 1), so Pr(X > `) = (1− p)`. Then for ` ≥ 2

Pr(X = `) = Pr(X > `− 1)− Pr(X > `) = (1− p)`−1 − (1− p)` = p(1− p)`−1.

Here’s what we’ve shown: there is some number p, such that for each ` ≥ 2,

Pr(X = `) = p(1− p)`−1.

But Pr(X > 1) = 1 − p, and Pr(X = 0) = 0, so Pr(X = 1) = p, so the above
formula works for ` = 1 as well. The mass function of X is:

pX(x) =

{
p(1− p)x−1 if x = 1, 2, 3, . . .
0 otherwise.

This is exactly the mass function of a Geometric with parameter p.
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