Math 30530, Fall 2013, Homework 5, supplementary solutions file
2.16

Solution to Problem 2.16. (a) The scalar a must satisfy

$$
1=\sum_{x} p_{X}(x)=\frac{1}{a} \sum_{x=-3}^{3} x^{2}
$$

so

$$
a=\sum_{x=-3}^{3} x^{2}=(-3)^{2}+(-2)^{2}+(-1)^{2}+1^{2}+2^{2}+3^{2}=28
$$

We also have $\mathbf{E}[X]=0$ because the PMF is symmetric around 0 .
(b) If $z \in\{1,4,9\}$, then

$$
p_{Z}(z)=p_{X}(\sqrt{z})+p_{X}(-\sqrt{z})=\frac{z}{28}+\frac{z}{28}=\frac{z}{14}
$$

Otherwise $p_{Z}(z)=0$.
(c) $\operatorname{var}(X)=\mathbf{E}[Z]=\sum_{z} z p_{Z}(z)=\sum_{z \in\{1,4,9\}} \frac{z^{2}}{14}=7$.
(d) We have

$$
\begin{aligned}
\operatorname{var}(X) & =\sum_{x}(x-\mathbf{E}[X])^{2} p_{X}(x) \\
& =1^{2} \cdot\left(p_{X}(-1)+p_{X}(1)\right)+2^{2} \cdot\left(p_{X}(-2)+p_{X}(2)\right)+3^{2} \cdot\left(p_{X}(-3)+p_{X}(3)\right) \\
& =2 \cdot \frac{1}{28}+8 \cdot \frac{4}{28}+18 \cdot \frac{9}{28} \\
& =7 .
\end{aligned}
$$

Solution to Problem 2.17. If X is the temperature in Celsius, the temperature in Fahrenheit is $Y=32+9 X / 5$. Therefore,

$$
\mathbf{E}[Y]=32+9 \mathbf{E}[X] / 5=32+18=50 .
$$

Also

$$
\operatorname{var}(Y)=(9 / 5)^{2} \operatorname{var}(X)
$$

where $\operatorname{var}(X)$, the square of the given standard deviation of X, is equal to 100 . Thus, the standard deviation of Y is $(9 / 5) \cdot 10=18$. Hence a normal day in Fahrenheit is one for which the temperature is in the range $[32,68]$.
2.18

Solution to Problem 2.18. We have

$$
p_{X}(x)= \begin{cases}1 /(b-a+1), & \text { if } x=2^{k}, \text { where } a \leq k \leq b, k \text { integer }, \\ 0, & \text { otherwise },\end{cases}
$$

and

$$
\mathbf{E}[X]=\sum_{k=a}^{b} \frac{1}{b-a+1} 2^{k}=\frac{2^{a}}{b-a+1}\left(1+2+\cdots+2^{b-a}\right)=\frac{2^{b+1}-2^{a}}{b-a+1} .
$$

Similarly,

$$
\mathbf{E}\left[X^{2}\right]=\sum_{k=a}^{b} \frac{1}{b-a+1}\left(2^{k}\right)^{2}=\frac{4^{b+1}-4^{a}}{3(b-a+1)},
$$

and finally

$$
\operatorname{var}(X)=\frac{4^{b+1}-4^{a}}{3(b-a+1)}-\left(\frac{2^{b+1}-2^{a}}{b-a+1}\right)^{2}
$$

Solution to Problem 2.22. (a) Let X be the number of tosses until the game is over. Noting that X is geometric with probability of success

$$
\mathbf{P}(\{H T, T H\})=p(1-q)+q(1-p)
$$

we obtain

$$
p_{X}(k)=(1-p(1-q)-q(1-p))^{k-1}(p(1-q)+q(1-p)), \quad k=1,2, \ldots
$$

Therefore

$$
\mathrm{E}[X]=\frac{1}{p(1-q)+q(1-p)}
$$

and

$$
\operatorname{var}(X)=\frac{p q+(1-p)(1-q)}{(p(1-q)+q(1-p))^{2}}
$$

(b) The probability that the last toss of the first coin is a head is

$$
\mathbf{P}(H T \mid\{H T, T H\})=\frac{p(1-q)}{p(1-q)+(1-q) p} .
$$

