Examples involving conditional probability

Math 30530, Fall 2013

September 5, 2013
I’m always late to work

60% of days I walk to work. On those days
 → I’m late 80% of the time
 → I’m on time 20% of the time
40% of days I drive to work. On those days
 → I’m late 50% of the time
 → I’m on time 50% of the time
I’m always late to work

60% of days I walk to work. On those days
 \rightarrow I’m late 80% of the time
 \rightarrow I’m on time 20% of the time
40% of days I drive to work. On those days
 \rightarrow I’m late 50% of the time
 \rightarrow I’m on time 50% of the time

Question 1: What’s the probability that I’m late for work?

Answer:
$$\Pr(L) = \Pr(L \cap W) + \Pr(L \cap D) = \Pr(W) \Pr(L | W) + \Pr(D) \Pr(L | D) = \left(0.6\right)\left(0.8\right) + \left(0.4\right)\left(0.5\right) = 0.68$$

Question 2: On a day that I’m late for work, what’s the probability that I drove?

Answer:
$$\Pr(D | L) = \frac{\Pr(D \cap L)}{\Pr(L)} = \frac{\Pr(D) \Pr(L | D)}{\Pr(L)} = \frac{\left(0.4\right)\left(0.5\right)}{0.68} \approx 0.29.$$
I’m always late to work

60% of days I walk to work. On those days
 → I’m late 80% of the time
 → I’m on time 20% of the time
40% of days I drive to work. On those days
 → I’m late 50% of the time
 → I’m on time 50% of the time

Question 1: What’s the probability that I’m late for work?

Answer: \(\Pr(L) = Pr(L \cap W) + Pr(L \cap D) = \Pr(W) \Pr(L|W) + \Pr(D) \Pr(L|D) = (.6)(.8) + (.4)(.5) = .68 \)
I’m always late to work

60% of days I walk to work. On those days
→ I’m late 80% of the time
→ I’m on time 20% of the time
40% of days I drive to work. On those days
→ I’m late 50% of the time
→ I’m on time 50% of the time

Question 1: What’s the probability that I’m late for work?

Answer: \(\Pr(L) = \Pr(L \cap W) + \Pr(L \cap D) = \Pr(W) \Pr(L|W) + \Pr(D) \Pr(L|D) = (.6)(.8) + (.4)(.5) = .68 \)

Question 2: On a day that I’m late for work, what’s the probability that I drove?
I’m always late to work

60% of days I walk to work. On those days
 → I’m late 80% of the time
 → I’m on time 20% of the time
40% of days I drive to work. On those days
 → I’m late 50% of the time
 → I’m on time 50% of the time

Question 1: What’s the probability that I’m late for work?

Answer: \(\Pr(L) = \Pr(L \cap W) + \Pr(L \cap D) = \)

\(\Pr(W) \Pr(L|W) + \Pr(D) \Pr(L|D) = (0.6)(0.8) + (0.4)(0.5) = 0.68 \)

Question 2: On a day that I’m late for work, what’s the probability that I drove?

Answer: \(\Pr(D|L) = \frac{\Pr(D \cap L)}{\Pr(L)} = \frac{(0.4)(0.5)}{0.68} \approx 0.29. \)
I got a flush!

I draw 5 cards from a well-shuffled deck.
I got a flush!

I draw 5 cards from a well-shuffled deck.

Question: What’s the probability that all 5 cards are hearts?
I got a flush!

I draw 5 cards from a well-shuffled deck.

Question: What’s the probability that all 5 cards are hearts?

Answer: Let A_i be the event that the ith card drawn is a heart.
I got a flush!

I draw 5 cards from a well-shuffled deck.

Question: What’s the probability that all 5 cards are hearts?

Answer: Let \(A_i \) be the event that the \(i \)th card drawn is a heart

\[
\Pr(A_1 \cap A_2 \cap A_3 \cap A_4 \cap A_5) = \Pr(A_1) \times \Pr(A_2|A_1) \times \Pr(A_3|A_1 \cap A_2) \times \Pr(A_4|A_1 \cap A_2 \cap A_3) \times \Pr(A_5|A_1 \cap A_2 \cap A_3 \cap A_4)
\]

\[
= \left(\frac{13}{52} \right) \left(\frac{12}{51} \right) \left(\frac{11}{50} \right) \left(\frac{10}{49} \right) \left(\frac{9}{48} \right)
\]
I got a flush!

I draw 5 cards from a well-shuffled deck.

Question: What’s the probability that all 5 cards are hearts?

Answer: Let A_i be the event that the ith card drawn is a heart.

$$
\Pr(A_1 \cap A_2 \cap A_3 \cap A_4 \cap A_5) = \Pr(A_1) \times \Pr(A_2|A_1) \times \\
\Pr(A_3|A_1 \cap A_2) \times \Pr(A_4|A_1 \cap A_2 \cap A_3) \times \\
\Pr(A_5|A_1 \cap A_2 \cap A_3 \cap A_4)
$$

$$
= \frac{13}{52} \times \frac{12}{51} \times \frac{11}{50} \times \frac{10}{49} \times \frac{9}{48}
$$

$$
= \frac{13 \times 12 \times 11 \times 10 \times 9}{52 \times 51 \times 50 \times 49 \times 48}
$$
Am I at the gym?

- If I go to the gym today, there’s an 80% chance that I’ll go tomorrow.
- If I skip the gym today, there’s a 40% chance that I’ll go tomorrow.
- I go to the gym today.

Question: What’s the probability that I go 30 days from now?

Answer: Let \(G_i = \{ \text{I go to the gym on day } i \} \) (today is day 0).

\[
\Pr(G_0) = 1
\]

\[
\Pr(G_1) = 0.8
\]
Am I at the gym?

- If I go to the gym today, there’s an 80% chance that I’ll go tomorrow
- If I skip the gym today, there’s a 40% chance that I’ll go tomorrow
- I go to the gym today.

Question: What’s the probability that I go 30 days from now?
Am I at the gym?

- If I go to the gym today, there’s an 80% chance that I’ll go tomorrow.
- If I skip the gym today, there’s a 40% chance that I’ll go tomorrow.
- I go to the gym today.

Question: What’s the probability that I go 30 days from now?

Answer: Let $G_i = \{\text{I go to the gym on day } i\}$ (today is day 0)
Am I at the gym?

- If I go to the gym today, there’s an 80% chance that I’ll go tomorrow
- If I skip the gym today, there’s a 40% chance that I’ll go tomorrow
- I go to the gym today.

Question: What’s the probability that I go 30 days from now?

Answer: Let \(G_i = \{ \text{I go to the gym on day } i \} \) (today is day 0)

\[
\Pr(G_0) = 1
\]
Am I at the gym?

- If I go to the gym today, there’s an 80% chance that I’ll go tomorrow.
- If I skip the gym today, there’s a 40% chance that I’ll go tomorrow.
- I go to the gym today.

Question: What’s the probability that I go 30 days from now?

Answer: Let $G_i = \{\text{I go to the gym on day } i\}$ (today is day 0).

- $\Pr(G_0) = 1$
- $\Pr(G_1) = 0.8$
Am I at the gym?

\[
\Pr(G_2) = \Pr(G_2 \cap G_1) + \Pr(G_2 \cap G_1^c)
\]
\[
= \Pr(G_1) \Pr(G_2|G_1) + \Pr(G_1^c) \Pr(G_2|G_1^c)
\]
\[
= .8 \Pr(G_1) + .4 (1 - \Pr(G_1))
\]
\[
= .4 \Pr(G_1) + .4 (= .72)
\]
Am I at the gym?

\begin{align*}
\Pr(G_2) &= \Pr(G_2 \cap G_1) + \Pr(G_2 \cap G_1^c) \\
&= \Pr(G_1) \Pr(G_2 | G_1) + \Pr(G_1^c) \Pr(G_2 | G_1^c) \\
&= .8 \Pr(G_1) + .4(1 - \Pr(G_1)) \\
&= .4 \Pr(G_1) + .4 (= .72) \\
\Pr(G_3) &= \Pr(G_2) \Pr(G_3 | G_2) + \Pr(G_2^c) \Pr(G_3 | G_2^c) \\
&= .8 \Pr(G_2) + .4(1 - \Pr(G_2)) \\
&= .4 \Pr(G_2) + .4 (= .688)
\end{align*}
Am I at the gym?

\[\Pr(G_2) = \Pr(G_2 \cap G_1) + \Pr(G_2 \cap G_1^c) \]
\[= \Pr(G_1) \Pr(G_2 | G_1) + \Pr(G_1^c) \Pr(G_2 | G_1^c) \]
\[= .8 \Pr(G_1) + .4(1 - \Pr(G_1)) \]
\[= .4 \Pr(G_1) + .4 (= .72) \]

\[\Pr(G_3) = \Pr(G_2) \Pr(G_3 | G_2) + \Pr(G_2^c) \Pr(G_3 | G_2^c) \]
\[= .8 \Pr(G_2) + .4(1 - \Pr(G_2)) \]
\[= .4 \Pr(G_2) + .4 (= .688) \]

In general,

\[\Pr(G_n) = \Pr(G_{n-1}) \Pr(G_n | G_{n-1}) + \Pr(G_{n-1}^c) \Pr(G_n | G_{n-1}^c) \]
\[= .8 \Pr(G_{n-1}) + .4(1 - \Pr(G_{n-1})) \]
\[= .4 \Pr(G_{n-1}) + .4 \]
Am I at the gym?

\[
\begin{align*}
\Pr(G_2) &= \Pr(G_2 \cap G_1) + \Pr(G_2 \cap G_1^c) \\
&= \Pr(G_1) \Pr(G_2|G_1) + \Pr(G_1^c) \Pr(G_2|G_1^c) \\
&= .8 \Pr(G_1) + .4(1 - \Pr(G_1)) \\
&= .4 \Pr(G_1) + .4 \ (= .72) \\
\Pr(G_3) &= \Pr(G_2) \Pr(G_3|G_2) + \Pr(G_2^c) \Pr(G_3|G_2^c) \\
&= .8 \Pr(G_2) + .4(1 - \Pr(G_2)) \\
&= .4 \Pr(G_2) + .4 \ (= .688)
\end{align*}
\]

In general,

\[
\begin{align*}
\Pr(G_n) &= \Pr(G_{n-1}) \Pr(G_n|G_{n-1}) + \Pr(G_{n-1}^c) \Pr(G_n|G_{n-1}^c) \\
&= .8 \Pr(G_{n-1}) + .4(1 - \Pr(G_{n-1})) \\
&= .4 \Pr(G_{n-1}) + .4
\end{align*}
\]

\[
\Pr(G_{30}) \approx \frac{2}{3} + 10^{-12}, \text{ and for } n \text{ above about 10, } \Pr(G_n) \text{ basically indistinguishable from } 2/3
\]